King's College London
 UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

BSc EXAMINATION

CP/2250 Mathematical Methods in Physics I

JANUARY 2002

Time allowed: THREE HOURS

Candidates must answer any SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each question or part of a question is indicated in square brackets.

Separate answer books must be used for each section of the paper.

You must not use your own calculator for this paper. Where necessary a College calculator will be supplied.

TURN OVER WHEN INSTRUCTED

SECTION A - answer any SIX parts of this section

1.1 By using an integrating factor or otherwise, find the solution of the differential equation

$$
\frac{d y}{d x}+x y=x \exp \left(-x^{2} / 2\right)
$$

which satisfies the boundary condition that $y=1$ when $x=0$.
1.2 Find the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+3 y=0
$$

which satisfies the boundary conditions that $y=1$ and $d y / d x=0$ when $x=0$.
[7 marks]
1.3 Given the scalar field

$$
\phi=\frac{1}{1+x^{2}+y^{4}},
$$

find the directional derivative of ϕ at the point $(1,1)$ in the y-direction.
1.4 Is the vector field $\mathbf{E}=z \cos x \mathbf{i}+x \sin y \mathbf{j}+x y \mathbf{k}$ irrotational or solenoidal or neither?
1.5 Calculate the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
1 & 3 \\
-3 & 1
\end{array}\right)
$$

1.6 By transforming to plane polar coordinates evaluate the integral

$$
\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} e^{-\left(x^{2}+y^{2}\right)} d y d x
$$

[7 marks]
1.7 Given the vector field $\mathbf{E}=y \mathbf{i}+x \mathbf{j}+2 z \mathbf{k}$ calculate the line integral $\int_{C} \mathbf{E} . d \mathbf{r}$ where C is the straight line from $(0,0,0)$ to $(1,1,0)$.
1.8 The Fourier series representation of the function

$$
f(x)= \begin{cases}1+x, & -1 \leq x \leq 0 \\ 1-x, & 0 \leq x \leq 1\end{cases}
$$

is

$$
F(f(x))=\frac{1}{2}+\frac{2}{\pi^{2}} \sum_{n \geq 1} \frac{\left((-1)^{n+1}+1\right)}{n^{2}} \cos n \pi x .
$$

Sketch the function $F(f(x))$ in the interval $-3 \leq x \leq+3$. By considering the value of F at $x=0$, find the sum of the series

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots
$$

SECTION B - answer TWO questions

2. The behaviour of a certain forced damped simple harmonic oscillator is determined by the differential equation

$$
\frac{d^{2} y}{d t^{2}}+2 k \frac{d y}{d t}+4 y=4 \cos 2 t
$$

where $0<k \ll 1$ is the damping constant and y is the amplitude of the motion. Find the general solution of this equation for the amplitude as a function of time t.
[8 marks]
What is the solution applicable when $k t \gg 1$?
[2 marks]
If the damping term is absent, the differential equation for the motion becomes

$$
\frac{d^{2} y}{d t^{2}}+4 y=4 \cos 2 t
$$

Use the D-operator method to deduce that a particular integral of the equation is

$$
y_{I}(t)=\frac{1}{4} \cos 2 t+t \sin 2 t
$$

and determine the general solution of the equation.

What is the dominant term of the solution as $t \rightarrow \infty$? Why does the absence of damping change the behaviour so radically?
3. If \mathbf{x} is an eigenvector of the matrix A with eigenvalue λ, prove that $A^{n} \mathbf{x}=\lambda^{n} \mathbf{x}$ for all $n \geq 1$.

A certain system can exist in two possible states. The vector $\mathbf{y}_{0}=\binom{p}{1-p}$, with $0 \leq p \leq 1$, represents the probabilities of the system being in one or other of the two states at time $t=0$. At each time step the system moves to a new state determined by a transition matrix A; that is, at time $t=1$, the system is in state \mathbf{y}_{1} where $\mathbf{y}_{1}=A \mathbf{y}_{0}$. The transition matrix is

$$
A=\left(\begin{array}{ll}
1 / 2 & 3 / 4 \\
1 / 2 & 1 / 4
\end{array}\right)
$$

Given that one eigenvalue of A is 1 , find the other eigenvalue and the corresponding unnormalised eigenvectors \mathbf{x}_{1} and \mathbf{x}_{2}.

The initial state \mathbf{y}_{0} can be expressed as a linear combination of the eigenvectors that is, $\mathbf{y}_{0}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}$. Find the coefficients a_{1} and a_{2}.

Hence deduce that, for a very large number n of time steps,

$$
A^{n} \mathbf{y}_{0} \rightarrow\binom{3 / 5}{2 / 5}
$$

4. Calculate $\operatorname{div} \mathbf{A}$ and $\operatorname{curl} \mathbf{A}$ when $\mathbf{A}=y z \mathbf{i}+x z \mathbf{j}+z \mathbf{k}$.
[4 marks]
Gauss's theorem states that

$$
\int_{V} \operatorname{div} \mathbf{A} d v=\int_{S} \mathbf{A} \cdot d \mathbf{S}
$$

where \mathbf{A} is a vector field and V is the volume enclosed by a regular closed surface S. Verify Gauss's theorem directly for the vector field \mathbf{A} given above, when V is the volume of a cube with one corner at the point $(0,0,0)$ and three other corners at $(1,0,0),(0,1,0)$ and $(0,0,1)$.

State Stokes' theorem.

For the same vector field A, verify Stokes' theorem by evaluating a surface integral and a line integral, where the surface is the square in the $y=1$ plane whose corners are at the points $(0,1,0),(1,1,0),(0,1,1)$ and $(1,1,1)$.
5. The Fourier series of a function $f(x)$ in the range $-T / 2 \leq x \leq T / 2$ has the form

$$
F(f(x))=a_{0} / 2+\sum_{n \geq 1}\left(a_{n} \cos (2 n \pi x / T)+b_{n} \sin (2 n \pi x / T)\right)
$$

where

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{-T / 2}^{+T / 2} f(x) \cos (2 n \pi x / T) d x \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{+T / 2} f(x) \sin (2 n \pi x / T) d x
\end{aligned}
$$

Show that the Fourier series of the function $f(x)=L^{2}-x^{2}$ when $-L \leq x \leq L$ is

$$
F(f(x))=\frac{2}{3} L^{2}+\frac{4 L^{2}}{\pi^{2}} \sum_{n \geq 1} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x / L)
$$

By choosing suitable values for x, find the sums of the series

$$
\begin{aligned}
& S_{1}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \\
& S_{2}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots
\end{aligned}
$$

Hence deduce that

$$
\frac{\pi^{2}}{8}=S_{3}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots
$$

