King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP2250 Mathematical Methods in Physics I

Summer 2003

Time allowed: 3 Hours

Candidates should answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

Definition of Fourier series:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n \geq 1}\left[a_{n} \cos \left(\frac{2 \pi n x}{T}\right)+b_{n} \sin \left(\frac{2 \pi n x}{T}\right)\right]
$$

where

$$
\begin{gathered}
a_{0}=\frac{2}{T} \int_{c}^{c+T} f(x) d x \\
a_{n}=\frac{2}{T} \int_{c}^{c+T} f(x) \cos \left(\frac{2 \pi n x}{T}\right) \mathrm{d} x \\
b_{n}=\frac{2}{T} \int_{c}^{c+T} f(x) \sin \left(\frac{2 \pi n x}{T}\right) \mathrm{d} x
\end{gathered}
$$

Paragraph spacing

SECTION A - Answer SIX parts of this section

1.1) Solve the following differential equation for $y(x)$ subject to the boundary condition $y(0)=0$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x \exp (y)}{x^{2}+1}
$$

[7 marks]
1.2) Show that the eigenvalues of any (2×2) Hermitian matrix \mathbf{A} are distinct except when \mathbf{A} is a multiple of the identity matrix \mathbf{I}.
1.3) Showing your working, determine which of the following sets of vectors are linearly independent:
i) $\mathbf{a}=2 \mathbf{j}+2 \mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{k}, \mathbf{c}=\mathbf{i}+\mathbf{j}$.
ii) $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \mathbf{b}=4 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k}, \mathbf{c}=7 \mathbf{i}+8 \mathbf{j}+9 \mathbf{k}$.
1.4) Show that the component of $\nabla \phi(x, y)$ in the \mathbf{i} direction of the surface $\phi(x, y)=$ $\exp -\left(x^{2}+y^{2}\right)$ is:

$$
-\sqrt{2} / e
$$

at the point $\mathbf{r}=\frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j})$.
1.5) Find the complementary function solution to the following differential equation:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y=(1+x) \exp (x)
$$

1.6) Determine which of the following fields is conservative:
a) $\mathbf{H}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$,
b) $\mathbf{E}=-y \mathbf{i}+x \mathbf{j}$.
1.7) Evaluate the path integral \int E.dr along the path $y=x$ from the point $(0,0)$ to $(2,2)$ for the field \mathbf{E} in question 1.6 (b).
1.8) Show that in the range $0 \leq x<\pi$ the Fourier series representation for the function $f(x)$ defined as:

$$
f(x)= \begin{cases}1 & 0 \leq x<\pi / 2 \\ 0 & x=\pi / 2 \\ -1 & \pi / 2<x \leq \pi\end{cases}
$$

is given by:

$$
f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi}{2}\right) \cos (n x) .
$$

[7 marks]

SECTION B - Answer TWO questions

2) State the Cayley-Hamilton theorem for square matrices.

Verify the Cayley-Hamilton theorem for the following matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
4 & -5 \\
1 & -2
\end{array}\right]
$$

[10 marks]
The matrix \mathbf{A} can be diagonalised by a similarity transform. Show that the eigenvalues of \mathbf{A} are $\lambda=3$ and $\lambda=-1$ and that the similarity matrix \mathbf{T} is given by:

$$
\mathbf{T}=\left[\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right]
$$

Hence use the similarity transform to evaluate $\mathbf{A}^{1 / 2}$.
[15 marks]
3) A radioactive element decays into a second element, which then subsequently decays into a third stable element. The numbers of atoms of each element are respectively N_{1}, N_{2} and N_{3} with corresponding decay rates k_{1} and k_{2} for the first two elements. The amount of each element is given by the following set of coupled differential equations:

$$
\begin{gathered}
\frac{\mathrm{d} N_{1}}{\mathrm{~d} t}=-k_{1} N_{1} \\
\frac{\mathrm{~d} N_{2}}{\mathrm{~d} t}=+k_{1} N_{1}-k_{2} N_{2} \\
\frac{\mathrm{~d} N_{3}}{\mathrm{~d} t}=+k_{2} N_{2}
\end{gathered}
$$

Show that these equations can be transformed into a matrix operator equation of the form:

$$
\mathbf{B a}=\boldsymbol{\Lambda} \mathbf{a} .
$$

where \mathbf{a} is a vector.
Explicitly write out the matrix operator \mathbf{B}.

Use an eigenvalue and eigenvector analysis to find the solution for the numbers of each type of element as a function of time.
[Hint: You may assume that the behaviour of N as a function of time is of the form $N=\mathbf{a} \exp (\lambda t)$, where \mathbf{a} and λ are to be determined.]

To find any constants use the initial condition that, at $t=0, N_{1}=N_{0}, N_{2}=N_{3}=$ 0.
[10 marks]

