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SECTION A — Answer SIX parts of this section

A body falling through a vacuum in a uniform gravitational field has a height z
which obeys the equation
d?z
dt?
where ¢ is the acceleration caused by gravity. At time £ = 0 both the height
and the speed are zero. Prove that at t > 0, z = —gt?/2.

=g

[7 marks]

A string is stretched along the z axis with its ends fixed at » = 0 and = = [.
When it is plucked, the displacement y of the string obeys
d?y
LA
dz? 4

where k is a constant. Show by substitution that y = asin kx + bcos kx where
a and b are constants.

Why is b = 0, and what are the possible values of k.
[7 marks]

The number N of radioactive nuclei changes, from an original value Ng, at the
rate dN/dt = —kN where k is a constant. Solve for N and show that the
radioactive half-life is 7 = (In2)/k.

[7 marks]

Show that the eigenvalue equation
a b x x
(£ ) (0)=+(0)

where k£ is the eigenvalue associated with the vector (5) , has eigenvectors with

x and y components in the ratios

b k—d

[7 marks]
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1.5) A vector field F has the value
F = (zi+yj+ 2k)/r®

at the point (z, y, z), a distance 7 from the origin. Show that V.F = 0 at all

points r # 0.
[7 marks]
1.6) Show that the Jacobean for the transformation u = e®cosy, v = e Fsiny
defined by
du  Ou
_ |9z &
-|E B
oz Jy
is cos?y — sin?y.
[7 marks]

1.7) The Fourier series for a smooth even function f(x) of period T is given by

flz) = ébn cos (27;7}3:)

where the coefficients b,, are independent of z for all n. Show that

T/2
/ f(z)dz = Thy.

—T/2
[7 marks]
1.8) Show that the value of the double integral
2 T
1
1 o %
is In 2.
[7 marks]
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SECTION B — Answer TWO questions

2) A weight hanging on a spring is driven by an applied sinusoidal force so that its
displacement y from its equilibrium position obeys
d?y dy 2
— +b— 4+ w'y = Fsinwt
a2 U T !
where b and w are constants. By considering y as the imaginary part of
exp(iwst), show that the steady state solution is

y = Fsin(wt — ¢)/\/(w2 — w?)? + b2w?,

and show that the phase angle ¢ = tan™" (bw; /(w? — w})).

[10 marks]
Hence show that when the driving frequency wy is varied
a) the maximum amplitude of y occurs at
w% =w?— %bQ,

[10 marks]

b) the maximum amplitude of the speed occurs at
w1 = Ww.
[10 marks]
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3) An inductor of inductance L, a resistor of resistance R and a capacitor of ca-
pacitance C' are connected in series. The charge ¢ on the capacitor varies with

time £ according to

d*q dg ¢
Lo2 LR 1y,
dt2+Rdt+C 0

Prove that a solution for ¢ is
q= e—at (Aleiﬁt + AZe—iﬁt)
where o = R/2L, 8% = (4L/C) — R?, and A; and A, are constants.

[8 marks]

When the circuit is connected, at ¢ = 0, the current flowing in it is zero and
q = qg. Show that

q = qoe~ " |cos(Bt) + %sin(ﬁt) X
[12 marks]

Assuming that R? < 4L/C and R << 2L, what is the time period of the
oscillations of ¢7

Show that the ratio of the amplitudes of successive oscillations separated by one
time period is exp(—mR/LJ).
[10 marks]

You may assume that the solution to

A%z dx
LT S R
G TV e

15
x = Aje™?t L Aje™2t

where m1 and my are the roots of the auziliary equation am? +bm + ¢ = 0.
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4) The function f(xz) is defined as

Sketch f(x) in the range 0 < x < 2.
[3 marks]

f(z) is expanded in a Fourier sine series,

f(z)=2ap+ Z by, sin(nx)
n=1

where

1 27 1 27

ag = — f(z)dz, and b, = — (x) sin(nz)dzx.

T Jo T Jo
Show that ag = 1, that b, = 0 when n is even, and b, = 2/(nw) when n is
odd.

[10 marks]

Sketch, in the range 0 < z < 2w, the first three non-zero terms of the expan-
sion.

[7 marks]

By considering the value of f(z) at = 7/2, use the Fourier series to show that

1 —

™
4 .

+
| o=
|
~| =

o =

[10 marks]
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5) A point P has Cartesian coordinates z, y, z. Show that a rotation through an
angle of 4+« about the z-axis changes the coordinates of P to new values X, Y,
Z, where:

X x
Y |=R|y
Z z
with
cosa —sina 0
R=| sinaa cosa O
0 0 1
[10 marks]
Show that the transpose RT of R is the inverse of R.
[3 marks]

Write down the matrix which describes the effect on x, y, 2z of a reflection in
the z = 0 plane.

[3 marks]

P is first rotated through an angle of —« about the z-axis and is then reflected
in the z = 0 plane. Show, by calculating its final position, that it is still at the

same distance, v/x2 + y? + 22, from the origin.

[8 marks]

Show that if the reflection took place before the rotation, the final position
would be the same (the operations commute).
[6 marks]
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