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Speed of light in free space c = 2.998× 108 m s−1

Newton’s constant GN = 6.673× 10−11 m3 s−2 kg−1

Planck’s constant h = 6.626× 10−34 J s
Mass of Sun M� = 1.989× 1030 kg

= 1.477× 103 m

Schwarzschild metric ds2 = − (
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2+

(in units with GN = c = 1) +r2
(
dθ2 + sin2θdφ2

)
Energy in Schwarzschild geometry E

m
=

(
1− 2M

r

)
dt
dτ

Christoffel symbols: Γα
µν =

1
2
gαβ(gβµ,ν + gβν,µ − gµν,β).

Riemann Curvature Tensor (RCT): Rα
βµν = Γ

α
βν,µ − Γα

βµ,ν + Γ
α

κµΓ
κ

βν − Γα
κνΓ

κ
βµ .

Properties of RCT: Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ .

SECTION A : Answer SIX parts of this section

1.1) By assuming (without proof) Birkhoff’s theorem for spherically-symmetric space
times, determine the nature of gravitational forces experienced by test particles in
the interior of a self-gravitating hollow sphere.

[7 marks]

1.2) In a coordinate system with coordinates xµ, µ = 0, 1, . . . 3, the invariant line element
is ds2 = ηαβdx

αdxβ, where ηαβ is the Minkowski metric, and repeated indices denote
summation as usual. If the coordinates are transformed xµ → xµ, show that the line
element acquires the form ds2 = ḡµνdx

µdxν , and express ḡµν in terms of ∂x
µ/∂x̄ν .

[7 marks]

1.3) Consider the two-dimensional metric space ds2 = dr2 + r2dθ2, where (r, θ) are polar
coordinates. Write down the two geodesic equations.

[7 marks]

SEE NEXT PAGE
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1.4) Consider a spherically-symmetric non-rotating body of mass M , and let two con-
centric shells surrounding the body be located at r1 = 4M and r2 = 8M , where r
denotes the radial spherical polar coordinate, and we work in a system of units in
which mass is measured in units of length. Let light be emitted from the shell r1 and
absorbed at the shell r2. Show that the period of this light is increased by a factor
1.22 as a consequence of the gravitational red-shift.

[7 marks]

1.5) Starting from rest at a great distance an observer is plunging straight (i.e. radially)
towards a non-rotating black hole of mass 8M�, where M� is the solar mass. The
observer sets his wristwatch to noon as he determines (by one means or another)
that he is crossing the horizon. Determine how much time (in seconds) is left, ac-
cording to the wristwatch of the observer, until the instant of crunch (i.e. when he
approaches the singularity). Assume without proof the formula for the energy in the
Schwarzschild geometry (see rubric on the first page), involving proper (wristwatch)
and far-away times.

[7 marks]

1.6) Find the Christoffel symbols, and from these compute the Riemann curvature tensor,
for the two-dimensional space time with coordinates (v, w) and metric:

ds2 = dv2 − v2dw2 (1)

What do you conclude about this space time?

[7 marks]

1.7) Let Aµν = −Aνµ be an antisymmetric rank-
(
2
0

)
tensor, and let Sµν = Sνµ be a

symmetric rank-
(
0
2

)
tensor. Show that SµνA

µν vanishes, and that for an arbitrary

rank-
(
2
0

)
tensor Bµν , the following relations are true:

BµνAµν =
1

2

[
Bµν − Bνµ

]
Aµν ,

BµνSµν =
1

2

[
Bµν +Bνµ

]
Sµν .

[7 marks]

SEE NEXT PAGE
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1.8) Assume (without proof) that the laws of conservation of total energy and angular
momentum during an orbit of a satellite of mass m, and angular momentum per
unit mass L/m, around a Black Hole of mass M , imply the following formula for the
square of the “effective potential” per unit mass (we work for convenience in units
where c = 1 = GN):

(
V (r)

m

)2

=

(
1− 2M

r

) [
1 +

(L/m)2

r2

]
(2)

The corresponding effective potential in the Newtonian approach is:

VN

m
= −M

r
+
(L/m)2

2r2
,

Describe qualitatively the most important differences between Newtonian planetary
motion around the Sun and General-Relativistic orbits around a Black Hole. Sketch
and comment on the stability of orbits.

[7 marks]

SEE NEXT PAGE
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SECTION B : Answer TWO questions

2) Consider the two-dimensional spacetime described by the infinitesimal line element:

ds2 = −dt2 + a2(t)dθ2,

where a is a function of t, called the scale factor for this universe.

1. By using an appropriate variational method, or otherwise, compute the Christof-
fel symbols for the above spacetime.

[6 marks]

2. How many independent components does the Riemann curvature tensor have in
this spacetime? Compute all independent components of this tensor.

[6 marks]

3. Show that the components of the Ricci tensor, defined as

Rµν = Rνµ = Rα
µαν ,

for this spacetime are:

Rtt = − ä

a
, Rθθ = aä, Rtθ = Rθt = 0.

[6 marks]

4. Compute the curvature scalar, R = gµνRµν , for this spacetime.

[6 marks]

5. If a(t) = t2, discuss the evolution of this two-dimensional universe.

[6 marks]

SEE NEXT PAGE
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3) Assume the equation for the stress-energy tensor in a flat space-time T µν
,ν = 0. Consider

a bounded system, i.e. a system for which T µν = 0 outside a bounded region D of
space (not spacetime), and on the boundary itself. Prove the following results:

(i) ∂
∂t

∫
D d3x T 0α = 0 , α = 0, . . . 3.

Interpret this result physically.

[6 marks]

(ii) Assume the weak-field Einstein’s equations in a slightly curved space time (the
so-called gravitational-wave equations):

(
− ∂2

∂t2
+∇2

)
h̄µν = −16πTµν (3)

where the symbol ∇2 = δij ∂
∂xi

∂
∂xj denotes the usual Laplacian in Euclidean three-

dimensional space, and Tµν = Sµν(!x)e
−iΩt, with Sµν(!x) being a function only of

the spatial coordinates xi; Sµν �= 0 only in a bounded region of space, D, which is
assumed spherical with a radius ε very small compared with the wavelength 2π/Ω of
the gravitational wave of frequency Ω.

Show that a solution of (3) has the form h̄µν = Re
(
Bµν(x

i)e−iΩt
)
, where Re denotes

the real part (which for convenience can be taken at the end of the computations),
and Bµν satisfies the equation:

(∇2 + Ω2)Bµν = −16πSµν (4)

Defining Jµν =
∫
D d3xSµν show that

−iΩJµ0e−iΩt =

∫
D
d3xT µ0

,0 .

[8 marks]

SEE NEXT PAGE



7 CP/3630

(iii) Using the equation T µν
,ν = 0 and Gauss’s theorem, show that

iΩJµ0e−iΩt =

∮
T µjnjdS ,

where nj is a vector normal to a surface bounding the volume D completely containing
the source of the gravitational waves. From this show that Jµ0 = 0.

[6 marks]

(iv) Assume the following outgoing-wave form of Bµν :

Bµν =
Aµν

r
eiΩr (5)

where Aµν are constants, and r is the usual spherical polar radial coordinate, whose
origin is chosen to be the location of the source of the gravitational wave. Integrate
(4) over the three-space, assuming that

∫
d3xΩ2Bµν is negligible compared to the

other terms of the integral. Then, by virtue of Gauss’s theorem, show that

Aµν = 4Jµν ,

h̄µν = 4Re

(
Jµν

r
eiΩ(r−t)

)

which, thus, gives the expression for the gravitational wave generated by the source,
keeping only dominant terms as 1/r becomes small, i.e. r is large, where the weak-
field analysis applies.

[10 marks]

SEE NEXT PAGE
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4) Einstein’s equations for a Friedmann–Robertson–Walker (FRW) universe, with scale
factor a(t) assume the form:

−3 ȧ
2(t)

a2(t)
− 3 k

a2(t)
+ Λ = −8πGNρ ,

−2 ä(t)
a(t)

− ȧ2(t)

a2(t)
− k

a2(t)
+ Λ = 8πGNp , (6)

where k is the usual characteristic parameter of the FRW cosmology, GN is Newton’s
constant, Λ is the cosmological constant, ρ is the energy density, and p is the pressure
density.

(i) Show that from these equations one can deduce the following:

ρ̇+ 3(ρ+ p)
ȧ(t)

a(t)
= 0 , (7)

ä(t)

a(t)
+
4πGN

3
(ρ+ 3p) =

Λ

3
. (8)

[8 marks]

(ii) Discuss what was the problem that Einstein wanted to solve by introducing the
cosmological constant term Λ into the theory.

[6 marks]

(iii) It follows from the FRW equations that

d

da(t)
(ρa3(t)) + 3pa2(t) = 0.

Assuming this without proof, show that for a matter dominated universe (‘dust’)

ρdust ∝ a−3(t)

and for a radiation dominated universe one has

ρrad ∝ a−4(t) .

[8 marks]

SEE NEXT PAGE
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(iv) Consider the asymptotic limit a(t)→ 0, for small t, in the case Λ = 0, and show
that in this case one obtains the following approximate equation for ‘dust’,

ȧ2(t) � (const)× 8πGN

3a(t)
,

and from this deduce the form of a(t) as a function of time, for small t, assuming an
expanding universe for small t.

[8 marks]

5) (i) How are angles defined in a general-relativistic setting ?

[5 marks]

(ii) A conformal transformation of a metric is defined by gµν → f(xα)gµν , for an
arbitrary function of the coordinates f(xα). Note that this transformation does not
affect the coordinates xα themselves. Show that this transformation preserves all
angles.

[8 marks]

(iii) Show that all null curves remain null under a conformal transformation.

[7 marks]

(iv) Consider a conformally-flat metric ds2 = e2φηαβdx
αdxβ, where φ is a function

of the coordinates xα, α, β ∈ {0, 1, 2, 3}, ηµν is the Minkowski metric, and repeated
indices denote summation as usual. Show that the null (straight-line) geodesics of
the Minkowski space time remain null geodesics for this space time.

[10 marks]
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