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SECTION A - Answer SIX parts of this section

1.1) Consider the two-dimensional metric space ds* = dr? + r2d6?, where (r,0) are polar
coordinates, r € [0,00] and 6 € [0,27]. Determine the Christoffel symbols using a

method of your choice.

[7 marks|

1.2) What is the metric of space time in the exterior of a spherically symmetric non-
rotating pulsating star? Justify your answer with a brief mathematical explanation
in the context of General Relativity.

[7 marks|

SEE NEXT PAGE
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1.3) A photon of frequency 10" Hz is emitted at a given time by an observer located at
a point on the surface of the Earth, and is received at a later time by an observer
who lies directly above the observer on Earth at a height A = 1274 meters. Assume
both observers to be static with respect to Earth as well as to each other, and
ignore cosmological expansion. Also assume that the Earth is a spherically symmetric
non rotating body. At what frequency will the second observer receive the photon?
Explain the various steps of your analysis.

[7 marks|

1.4) In d space-time dimensions, the Einstein equations in the presence of matter without
a cosmological constant read

Rl“/ — %gu,,R = SWGNTH,,.

in the standard notation, with Gy the Newton constant. Conformal matteris defined
as the kind of matter for which the trace of the stress-tensor © = ¢*'1},, vanishes.
Show that in two space-time dimensions any matter satisfying the Einstein equations
is necessarily conformal.

[7 marks]

1.5) Under general coordinate transformations z# — z'*(2"), a scalar ® and a covariant
second rank tensor 7, transform, by definition, as follows: ® — & '(z') = ®(z)
and T, — T ), (2") = (02%/02"")(027 /02" ) Tap respectively. Consider the object
®(x)Tuw(r) and determine its transformation properties under general coordinate
transformations. If 7, is an antisymmetric second rank covariant tensor, what is
the value of g"*7,,, where g"” is the inverse of the metric tensor?

[7 marks|

1.6) Consider a four-dimensional flat (k = 0) Robertson-Walker space time ds* = —dt? +

a®(t) (dx® + x*(df* + sin®0d¢?)) where x is the radial coordinate. State and derive
Hubble’s law in such a Universe.

[7 marks]

SEE NEXT PAGE
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1.7) State the various forms of the Equivalence Principle of General Relativity. Using the
appropriate form, determine the ratio of the mass in the presence of a gravitational
field to that at spatial infinity in each of the following cases: (i) a ball of gold of
radius r¢, and (ii) a neutron star of the same radius.

[7 marks]

1.8) Consider the two-dimensional metric: ds? = % (dt* — dz?). Geodesics are, by defini-
tion, curves z(t) of extremal length, i.e. satisfying the variational equation:

dt dae\ 2
21/2: —_— 1— _— _=
(5/(ds) 5/15 (dt) 0

Write down the Lagrange equation obtained from this variational principle, and thus
show, without computing the Christoffel symbols, that the geodesics are given by :

2 _ 42 2
— 40 - )
(x—x0)"=t"+a

where xg, a are constants.
[Hint: solve the variational (Lagrange) equation by letting % = tanh 6].

[7 marks]

SEE NEXT PAGE
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SECTION B - Answer TWO questions

2) A two-dimensional space time is described by the infinitesimal line element:
ds® = —dt* + tdr?,
where ¢ is the time coordinate.

(a) Compute the Christoffel symbols for the above space time, by any method you prefer,
and write down the appropriate geodesics.

[6 marks|

(b) Compute the independent components of the Riemann tensor for this two dimensional
geometry.

[6 marks|

(c) For this space time show that the components of the Ricci tensor are:

1 1
Ry = — R, =——, R, =R, =0.
= g2 1 t t

[6 marks]

(d) Compute the curvature scalar, R = g’ R, for this space time.
[6 marks]

(e) Describe the evolution of the universe governed by the above metric. Is there a cosmic
horizon in this case?

[6 marks]

SEE NEXT PAGE
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3) An aircraft is flying back and forth for 15 hours (as measured by observers on the
ground) at an altitude A = 9000 meters and with velocity v = 140 (meters)(sec)™".

The atomic clocks carried by the plane are compared with identical clocks on the
ground.

(a) Ignoring general relativistic effects, compute the special relativistic time dilation be-
tween the airborne and terrestrial clocks.

[5 marks]

(b) Assume that the plane flew very slowly, so that to a very good approximation it
can be considered as being static at the altitude h above the Earth’s surface. Treat
the Earth as a spherical non-rotating body, of mass Mg and radius rg. Moreover,
consider that the altitude h is very small as compared to the radius of the Earth, so
that h + rg ~ rg to a good approximation.

Show that, as a consequence of General-Relativistic effects alone, during the ¢, =15
hour flight, the plane’s clocks gain approximately

Mgh
At shen ( r?; > tonenr = 52.2 x 107 sec,
®

as compared with the ground clocks.

[23 marks]

(c) Compare the special and general relativistic results in parts (a) and (b) above by
expressing the special relativistic result as a percentage correction to the general
relativistic one. Thus give the final result for the time of flight measured by the clock
on the aircraft.

[2 marks]

SEE NEXT PAGE
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4) Assuming matter to behave as a perfect fluid, the Einstein equations for a four-
dimensional perfect-fluid Friedmann-Robertson-Walker (FRW) cosmology are:
a’(t) 5 k
a’(t) a*(t)
a(t)  a*(t) k
-2 — — +A = 81Gnp, 4.2
o) 1) ) o 2
Here the overdots denote derivatives with respect the cosmic time ¢, a(t) is the scale
factor, k is the usual characteristic parameter of the FRW cosmology, G is the
Newton constant, A is the cosmological constant, p is the energy density, and p is
the pressure.

+A = —87TGNp, (41)

(a) Assume, without proof, the following thermodynamic equation for producing work
in this perfect fluid: dE = —pdV where V = «?® is the proper volume, and E is
the total energy included in this proper volume. Using this equation determine the
dependence of p on the scale factor a(t) in the case of a perfect fluid universe with
the equation of state: p = wp , where w < 1 is a time-independent positive constant.

[10 marks]

(b) For an ezpanding Universe, with zero cosmological constant A = 0, assume that it
is radiation dominated (w = 1/3), and flat (k=0). By algebraically manipulating
the system of equations (4.1),(4.2) show that in this case d/a = —(a/a)? , and thus
determine the dependence of a(t) and p(t) on the cosmic time t.

[Hint: assume a(t) = aot’, ag=const, f=const, and determine ¢].
[12 marks]
(c) What do you conclude about the acceleration and the cosmic horizon for this universe?
[4 marks]

(d) Consider now a static universe, with a generic value of k and in the presence of a
positive cosmological constant A > 0. Show in this case that equations (4.1),(4.2)
imply that normal matter with positive energy density can only exist if the universe
is closed, that is: k£ > 0.

[4 marks|

SEE NEXT PAGE
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5) Consider the motion of an orbiting planet, of mass m, in a Schwarzschild space time
which describes the exterior of a massive, spherically symmetric celestial object of
mass M >>m. Fix § = 7 in the Schwarzschild metric and thus consider an effective
three-dimensional Schwarzschild space time (¢, 7, ¢), with ¢ = [0, 27] the azimuth.
Work in units where Gy = ¢ = 1.

(a) Write down the Lagrangian for the planet, viewed as a satellite point particle in
this geometry, and show that the conservation of energy and angular momentum are
obtained as a consequence of Lagrange’s equations for ¢ and ¢ respectively.

[Hint: You may use the appropriate definitions given in the rubric]
[6 marks]

(b) (i) Use the conservation equations for energy and angular momentum (derived above)
in the expression for the time-like invariant element d7? in the Schwarzschild geometry
to arrive at the following equation:

Br-(2)- (-2 ('

(ii) From this equation determine the effective potential per unit satellite mass U/m
(c.f. rubric) for the orbiting planet in terms of the energy and angular momentum
of the planet.

[3 marks|

[1 mark]

(c) Discuss the behaviour of the effective potential near the point r — 0 and its physical
significance for a satellite in the Schwarzschild geometry. From this explain which
one of the two curves of figure 1 (see next page) corresponds to a sketch of the
Schwarzschild space-time effective potential under consideration.

[6 marks|

(d) Consider the case in which the energy of the satellite is slightly above the local
minimum, but well below the local maximum of the effective potential. Provide a
rough sketch of the orbit in this case.

[1.5 marks]

QUESTION CONTINUES ON NEXT PAGE
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Figure 1: Two possible curves (dashed or continuous) purporting to be the Schwarzschild
effective potential.

(e) Approximate the radial motion near the local minimum of the effective potential
at r = 1o by a harmonic oscillation motion of frequency w? ~ d*(U/m)/dr?|,_,-
Assume, without proof, that the radial (w,) and angular (wy) oscillation frequencies
are given by:

wzzM(T0—6M) w2: M .
"ord(ro—3M) ? " r3(ro — 3M)
(i) Compute the difference Aw = wy — w, of these two rates, by making the approxi-
mation: wj — w; =~ 2ws(wy — wy) and thus show that
3M

Aw >~ —wy . [3.5 marks|
To

(ii) Use this to determine the precession angle in terms of the total angle covered in
orbital motion. [3 marks]

(f) Consider the planet Mercury as it orbits the Sun. Determine in degrees the advance
precession of the perihelion of Mercury per century (=100 Earth years). The (av-
erage) radius of Mercury’s orbit is ry = 5.8 x 10'% meters, the period of Mercury’s
orbit around the Sun is 7.6 x 10° sec, and the period of Earth around the Sun is
3.156 x 107 sec.

[6 marks]
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