King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP3201 Mathematical Methods in Physics III

Summer 2003

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper.
Where necessary, a College calculator will have been supplied.

SECTION A - Answer SIX parts of this section

1.1) Determine all of the values of the complex logarithm $\ln \left(1-e^{\frac{i \pi}{2}}\right)$.
1.2) Locate and classify all of the singularities in the finite z-plane of the function

$$
f(z)=\frac{\left(z^{2}+3 z+2\right) \sin ^{2} z}{z^{2}\left(z^{2}-1\right)^{2}}
$$

1.3) Determine a Laurent series for the function

$$
f(z)=\frac{1}{(z+3)(z+5)}
$$

which is valid in the region $0<|z+3|<2$.
1.4) Derive the expression for the integral

$$
\int_{0}^{\infty} \exp \left(-a x^{4}\right) d x
$$

(where a is a positive real number) in terms of the gamma function

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

[Hint: Make the substitution $t=x^{4}$.]
1.5) Use the method of Lagrange multipliers to find the area of the largest rectangle that can be inscribed within the ellipse

$$
\frac{x^{2}}{100}+\frac{y^{2}}{64}=1
$$

1.6) State the Cauchy-Riemann equations for an analytic function. Use these equations to determine whether

$$
\frac{y+i x}{x^{2}+y^{2}}
$$

is an analytic function.
1.7) Use the Bessel function series

$$
J_{n}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+n+1)}\left(\frac{z}{2}\right)^{2 m+n}
$$

where $\Gamma(x)$ denotes the gamma function, to derive the relation

$$
\frac{d}{d z}\left[z^{-1} J_{1}(z)\right]=-z^{-1} J_{2}(z)
$$

1.8) Three masses m_{1}, m_{2}, and m_{3} lie on a straight line and are connected by two springs of stiffness K. The potential energy V for a spring has the form

$$
V=\frac{1}{2} K\left(x_{1}-x_{2}\right)^{2}+\frac{1}{2} K\left(x_{2}-x_{3}\right)^{2}
$$

where x_{1}, x_{2}, and x_{3} are the displacements of the respective masses from their equilibrium positions. Write down the lagrangian for the system in terms of these displacements. From the Lagrange equations show that

$$
m_{2} \ddot{x}_{2}+K\left(x_{2}-x_{1}\right)-K\left(x_{3}-x_{2}\right)=0
$$

SECTION B - Answer TWO questions

2) State the Cauchy residue theorem.

Consider a function $f(z)$ which is analytic at the real integral values of $z=$ $0, \pm 1, \pm 2, \ldots$ and tends to zero at least as fast as $|z|^{-2}$ as $|z| \rightarrow \infty$.

Show that
$\oint_{S} \pi \cot (\pi z) f(z) d z=2 \pi i\left\{\sum_{n=-N}^{+N} f(n)+\begin{array}{c}\text { (sum of the residues of } \pi \cot (\pi z) f(z) \\ \text { at the poles of } f(z) \operatorname{inside} S)\end{array}\right\}$
where S is a square with corners at the points $z=\left(N+\frac{1}{2}\right)(\pm 1 \pm i)$ where N is any positive integer.
[15 marks]
[Hint: Use the Cauchy residue theorem. Note that there are two types of poles, one arising as poles of $\cot (\pi z)$ and the other as poles of $f(z)$.]
On assuming that $\oint_{S} \pi \cot (\pi z) f(z) d z \rightarrow 0$ as $N \rightarrow \infty$ and by considering $f(z)=\frac{1}{z^{2}+1}$ show that

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}=\frac{1+\pi \operatorname{coth} \pi}{2}
$$

[10 marks]
3) The Bessel function $J_{p}(a x)$ satisfies the differential equation

$$
x \frac{d}{d x}\left(x \frac{d y}{d x}\right)+\left(a^{2} x^{2}-p^{2}\right) y=0
$$

and also assume the recursion relation

$$
\frac{d}{d x} J_{p}(x)=\frac{p}{x} J_{p}(x)-J_{p+1}(x) .
$$

Use this to prove the following orthogonality theorem:

$$
\int_{0}^{1} x J_{p}(a x) J_{p}(b x) d x=\left\{\begin{array}{l}
0 \text { if } a \neq b \\
\frac{1}{2} J_{p+1}^{2}(a) \text { if } a=b
\end{array}\right.
$$

where a and b are zeros of $J_{p}(x)$.
[20 marks]
Hence evaluate

$$
\int_{0}^{1}\left(\frac{\sin a x}{a x}-\cos a x\right)^{2} d x
$$

where a is a root of the equation $\tan x=x$.
[10 marks]
[Hint: Note that $J_{\frac{3}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$.]
4) Define the hamiltonian in terms of the lagrangian. Show that the hamiltonian is independent of velocities.

A particle of mass m is constrained to move on a smooth surface which has a parametric representation

$$
x=\rho \cos 2 \phi, y=\rho \sin 2 \phi, z=k \rho
$$

where $0<\rho<\infty, 0 \leq \phi \leq \pi$ and k is a positive constant. The force of gravity acts in the negative z direction.
a) Derive an expression for the lagrangian of the system. Hence obtain the Lagrange equations of motion.
b) Deduce that

$$
m \rho^{2} \frac{d}{d t} \phi=\frac{J}{2}
$$

where J is a constant of motion and hence

$$
m\left(1+k^{2}\right) \ddot{\rho}=\frac{J^{2}}{m \rho^{3}}-m g k
$$

c) Write $u=\frac{1}{\rho}$ and hence show that a particle trajectory $\rho=\rho(\phi)$ satisfies the differential equation

$$
\frac{\left(1+k^{2}\right)}{4} \frac{d^{2} u}{d \phi^{2}}=-u+\frac{m^{2} g k}{J^{2} u^{2}} .
$$

[Hint: In terms of generalised cordinates the Lagrange equations of motion are

$$
\left.\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{\alpha}}-\frac{\partial L}{\partial q_{\alpha}}=0 .\right]
$$

5) The real and imaginary parts of an analytic function $f(z)$ satisfy Laplace's equation. Use this to outline a method of solving Laplace's equation in an open connected region of the plane.
[10 marks]
A slab of material of constant thermal conductivity is located in the region

$$
\begin{aligned}
& -\frac{1}{2} \leq x \leq \frac{1}{2} \\
& 0 \leq y<\infty
\end{aligned}
$$

The temperature Φ satisfies Laplace's equation within the material and at the boundaries of the slab is given by

$$
\Phi=\left\{\begin{array}{l}
T, \quad x=-\frac{1}{2} \\
2 T, \quad x=\frac{1}{2} \\
0, \quad y=0
\end{array}\right.
$$

Assume that the mapping

$$
w=\sin (\pi z)
$$

transforms the region of the slab (when $z=x+i y$ is considered as the complex plane) into the upper half plane of the w-plane.
By solving the Laplace equation in the w-plane and on using the mapping, prove that in the steady state

$$
\Phi=\frac{T}{\pi} \tan ^{-1}\left\{\frac{\cos \pi x \sinh \pi y}{\sin \pi x \cosh \pi y+1}\right\}-\frac{2 T}{\pi} \tan ^{-1}\left\{\frac{\cos \pi x \sinh \pi y}{\sin \pi x \cosh \pi y-1}\right\}+2 T
$$

[20 marks]
[Hint: In the w-plane consider the imaginary parts of $\ln (w+1)$ and $\ln (w-1)$ in order to satisfy Laplace's equation.]

