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The following information defines terms used in this examination
and may be of use.

• In a general curvilinear coordinate system (q1, q2, q3) the unit base vectors ei

(i = 1, 2, 3) are given by

ei =
1

hi

(

∂r

∂qi

)

,

where hi =
∣

∣

∣

∂r

∂qi

∣

∣

∣
are the corresponding scale factors.

• The cylindrical coordinates (r, θ, z) are defined by the transformation equations

x = r cos θ, y = r sin θ, z = z.

The Laplacian of a function Ψ in these coordinates is

∇2Ψ =
1

r

∂

∂r

(

r
∂Ψ

∂r

)

+
1

r2

∂2Ψ

∂θ2
+

∂2Ψ

∂z2

• The spherical coordinates (r, θ, φ) are defined by the transformation equations:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

and the Laplacian of a function Ψ in these coordinates is

∇2Ψ =
1

r2

∂

∂r

(

r2 ∂Ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+
1

r2 sin2 θ

∂2Ψ

∂φ2

• Functions φn(x) = sin nx and ϕn(x) = cos nx satisfy the following identities:

∫ 2π

0

φn(x)φm(x)dx =

∫ 2π

0

ϕn(x)ϕm(x)dx = πδnm

∫ 2π

0

ϕn(x)φm(x)dx = 0

where n = 1, 2, 3, ....
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SECTION A – Answer SIX parts of this section

1.1) A system of curvilinear coordinates (α, β, γ) is given by the following relations:

α = x + y, β = x − y, γ = z

Express the unit base vectors eα, eβ and eγ of this system in terms of the unit

base vectors i, j and k of the Cartesian system, and check if the new coordinate

system is orthogonal.

[7 marks]

1.2) Using the integral representation of the Dirac delta function,

δ(x) =

∫ ∞

−∞

e2πiνxdν,

evaluate the following double integral:

∫ ∞

−∞

H(x − 1)

[

e−x +

∫ ∞

−∞

e−x2
+2πixydy

]

dx,

where H(x) is the Heaviside unit step function.

[7 marks]

1.3) Calculate the Fourier transform (FT) of the function

f(t) = te−α|t|, α > 0

[7 marks]

1.4) Specify and classify the singular points of the differential equation

(x2 − 4)
d2y

dx2
+ (x + 2)

dy

dx
+ (x − 2)y = 0

[7 marks]
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1.5) Show that the wave equation

∇2Ψ =
1

v2

∂2Ψ

∂t2

in a spherically symmetrical case can be rewritten as follows:

2

r

∂Ψ

∂r
+

∂2Ψ

∂r2
=

1

v2

∂2Ψ

∂t2

where Ψ = Ψ(r, t), v is a constant and r is the distance from the centre of

symmetry. Using the method of separation of variables, obtain two ordinary

differential equations for two functions, one which depends only on r and the

other only on t.

[7 marks]

1.6) Give the definition of the Laplace transform (LT) F (s) = L [f(t)] of a function

f(t). Hence, calculate the LT of the function

f(t) = sinh(αt) =
1

2

(

eαt − e−αt
)

(you may assume that Re(s − α) > 0).

[7 marks]
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SECTION B – Answer TWO questions

2) Consider the following differential equation

4x2 d2y

dx2
− 2x(x + 2)

dy

dx
+ (x + 3)y = 0

a) Find and classify all singular points of this equation.

[2 marks]

b) Using the generalised series expansion for the solution (the Frobenius method)

around the x = 0 point,

y(x) =

∞
∑

n=0

anxn+s,

show that the two solutions of the corresponding indicial equation for s can be

chosen as s1 = 1

2
and s2 = 3

2
, while the recurrence relation for the coefficients

is:

an+1 =
1

2(n + s) + 1
an, n = 0, 1, 2, ...

[13 marks]

c) Considering the coefficient a0 as arbitary, derive the four first terms of two

independent series solutions of the equation, y1(x) and y2(x).

[10 marks]

d) Why is it sufficient to keep only x1/2 as y1(x) and ignore the rest of the series?

[Hint: compare the rest of the series with y2(x).]

[3 marks]

e) Hence, state the general solution of the equation.

[2 marks]
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3) Consider a thin circular plate of radius a. One semicircular boundary of it is

held at a constant temperature of 100◦, while the other is kept at 0◦.

a) Explain why the heat transport equation

∇2T =
1

µ2

∂T

∂t

can in this case be rewritten as

1

r

∂T

∂r
+

∂2T

∂r2
+

1

r2

∂2T

∂θ2
= 0,

where T = T (r, θ) depends on the distance r from the centre of the plate and

the polar angle θ.

[4 marks]

b) Write down the appropriate boundary conditions for this problem. What should

we require the solution to be at the centre of the plate?

[2 marks]

c) Using the method of separation of variables, show that the functions R(r) and

Θ(θ) of an elementary solution R(r)Θ(θ) for T (r, θ) satisfy the following ordinary

differential equations (ODE’s):

d2Θ

dθ2
+ kΘ = 0 and r2 d2R

dr2
+ r

dR

dr
− kR = 0,

where k is the corresponding separation constant.

[4 marks]

d) Show that the only choice for the constant k that ensures 2π periodicity of the

function Θ(θ) is k = n2, where n = 0, 1, 2, .... Hence, find a general solution of

the ODE for Θ(θ).

[4 marks]

e) Obtain two independent solutions of the ODE for R(r) using a trial solution

R(r) ∝ rα. Explain why only one solution can be used for this problem. Hence,

show that a general solution of the heat equation for the plate is

T (r, θ) =

∞
∑

n=0

[An cos(nθ) + Bn sin(nθ)] rn

[4 marks]

f) Finally, using the boundary conditions at the rim of the plate, r = a, derive

expressions for the unknown coefficients An and Bn. [Hint: use integration over

the whole range 0 ≤ θ < 2π and consider the case of the coefficients A0 and B0

separately.]

[12 marks]
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4)

a) Calculate the Laplace transform (LT) L [f(t)] of the function f(t) = eiαt and

show that

L [cos(αt)] =
s

s2 + α2
and L [sin(αt)] =

α

s2 + α2

[2 marks]

b) Prove the convolution theorem:

L

[
∫ t

0

f(t − τ)g(τ)dτ

]

= L [f(t)]L [g(t)]

[Hint: write the left-hand side as a double integral using the definition of the

LT, and then change the order of integration.]

[8 marks]

c) Use the convolution theorem and the fact that L[1] = 1

s
to show that

L−1

[

α2

s(s2 + α2)

]

= 1 − cos(αt)

Show that the same result can also be obtained by calculating the LT of f(t) =

1 − cos(αt) directly.

[7 marks]

d) Prove the following identity:

L

[

df(t)

dt

]

= sL [f(t)]− f(0)

[Hint: use the definition of the LT and integration by parts.]

[3 marks]

e) Using the above results, apply the LT method to solve the following system of

first order differential equations

dz

dt
+ 2y = 0,

dy

dt
− 2z = 2

subject to the initial conditions z(0) = y(0) = 0.

[10 marks]
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