King's College London
 UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

BSc EXAMINATION

CP/2260 Mathematical Methods in Physics II

SUMMER 2002

Time allowed: THREE HOURS

Candidates must answer any SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each question or part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

TURN OVER WHEN INSTRUCTED

SECTION A - answer any SIX parts of this section

1.1 Evaluate the integral

$$
\int_{-\infty}^{\infty}(3 \delta(3 t-2)+3 H(t-2)) e^{-3 t} d t
$$

where $\delta(t)$ denotes the Dirac delta function and $H(t)$ denotes the Heaviside step function.
1.2 A curvilinear coordinate system $\left(q_{1}, q_{2}\right)$ is defined by the transformation equations

$$
x=q_{1} q_{2}, \quad y=\left(q_{1}^{2}-q_{2}^{2}\right) / 2 .
$$

Determine the unit base vectors \mathbf{e}_{1} and \mathbf{e}_{2} for this coordinate system. Are \mathbf{e}_{1} and \mathbf{e}_{2} orthogonal?
1.3 Determine the Fourier transform of the function

$$
f(x)=(\delta(x-a)+\delta(x+a)) / 2
$$

where $\delta(x)$ denotes the Dirac delta function and a is a constant.
1.4 By assuming a solution of the form $y=A x^{c}$, where A and c are constants, determine the general solution of the differential equation

$$
x \frac{d}{d x} x \frac{d y}{d x}-n^{2} y=0
$$

where $n=0,1,2, \ldots$.
[7 marks]
1.5 A possible solution of the two-dimensional wave equation in polar coordinates can be written in the form

$$
\phi(r, t)=J_{0}(\omega r)(C \cos (\omega c t)+D \sin (\omega c t))
$$

where r is the radial distance, ω is a separation constant, c is the wave velocity, C and D are constants, and $J_{0}(x)$ is a Bessel function. Determine the general solution which satisfies the boundary condition that $\phi(R, t)=0$ at all times $t \geq 0$.
1.6 The function $\phi(r, \theta)$ satisfies the equation,

$$
\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0
$$

Separate the equation into two ordinary differential equations involving a separation constant k. What are the allowed values of k if $k>0$ and the solution $\phi(r, \theta)$ must be single valued as a function of θ ?
1.7 The generating function for Chebyshev polynomials $T_{n}(x)$ is

$$
G(x, t)=\frac{1-x t}{1-2 x t+t^{2}}=\sum_{n \geq 0} T_{n}(x) t^{n}
$$

where $|x| \leq 1$ and $0 \leq t<1$. Determine the values of $T_{n}(0)$ for $n=0,1,2,3,4$.
1.8 The generating function for Legendre polynomials $P_{n}(x)$ is

$$
G(x, t)=\sum_{n \geq 0} P_{n}(x) t^{n}=\left(1-2 x t+t^{2}\right)^{-1 / 2}
$$

Show that

$$
(x-t) \frac{\partial G}{\partial x}=t \frac{\partial G}{\partial t} .
$$

Then show that

$$
x \frac{d P_{n}}{d x}-\frac{d P_{n-1}}{d x}=n P_{n} .
$$

SECTION B - answer TWO questions

2. Classify the singular points of the differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+9 y=0
$$

[Ignore the point at infinity.] What type of point is $x=0$?

Use the method of Frobenius to show that one solution of the equation is

$$
y=a_{0}\left[1-\frac{9}{2!} x^{2}+\frac{45}{4!} x^{4}+\frac{315}{6!} x^{6}+\ldots\right],
$$

and find the other solution.

Show that the radius of convergence of the series solution is 1 .
3. Given that $g(\lambda)$ is the Fourier transform of $f(x)$ and that $g(\lambda)$ is an odd function of λ, show that

$$
f(x)=2 i \int_{0}^{\infty} g(\lambda) \sin (2 \pi \lambda x) d \lambda
$$

> [6 marks]

Prove that the Fourier transform of the function

$$
f(x)= \begin{cases}-1, & -1<x<0 \\ +1, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

is

$$
g(\lambda)=-\frac{2 i \sin ^{2} \pi \lambda}{\pi \lambda} .
$$

Use the inverse Fourier transform to evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin ^{3} t \cos t}{t} d t
$$

4. The generating function for Legendre polynomials $P_{n}(x)$ is

$$
G(x, t)=\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{n \geq 0} P_{n}(x) t^{n} .
$$

Deduce that

$$
(n+1) P_{n+1}-(2 n+1) x P_{n}+n P_{n-1}=0 .
$$

Hence deduce that

$$
P_{n+2}(0)=-\frac{n+1}{n+2} P_{n}(0) .
$$

Show that $P_{n}(-x)=(-1)^{n} P_{n}(x)$.

A spherical metal shell is split into two halves by a thin insulating layer. The centre of the sphere is at the origin and its radius is R. The hemisphere with $z>0$ is at potential $+V$ and the hemisphere with $z<0$ is at potential $-V$. In the region outside the sphere, that is when the radial distance $r \geq R$, the electrostatic potential $\phi(r, \theta)$ satisfies Laplace's equation and has the solution

$$
\phi(r, \theta)=\sum_{n \geq 0}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n+1}}\right) P_{n}(\cos \theta),
$$

where θ is the polar angle, A_{n} and B_{n} are constants, and $P_{n}(\cos \theta)$ are Legendre polynomials.

What is the solution that satisfies the boundary condition $\phi(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$?
[5 marks]
The orthogonality relation for Legendre polynomials is

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m}
$$

where $\delta_{n m}$ is the Kronecker delta. Use this relation and the boundary condition at the surface of the sphere that

$$
\phi(R, \theta)= \begin{cases}+V, & 0 \leq \theta<\pi / 2 \\ -V, & \pi / 2<\theta \leq \pi\end{cases}
$$

to show that $B_{m}=0$ when m is even and

$$
B_{m}=(2 m+1) R^{m+1} V \int_{0}^{1} P_{m}(x) d x
$$

when m is odd.
5. The temperature of a spherical object of radius R is given by the function $\phi(r, t)$ where t is the time and r is the radial distance from the centre of the sphere. The temperature obeys the heat conduction equation

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial \phi}{\partial r}=\frac{1}{\alpha^{2}} \frac{\partial \phi}{\partial t}
$$

where α is the coefficient of heat conduction.
Use the method of separation of variables to obtain two ordinary differential equations.
[4 marks]
By substitution check that

$$
\psi(r)=\frac{1}{\omega r}[A \cos \omega r+B \sin \omega r]
$$

is a solution of the equation involving r, where ω^{2} is a separation constant. Then deduce that the general solution for $\phi(r, t)$ which is finite for all t is

$$
\phi(r, t)=C-\frac{D}{r}+\frac{1}{\omega r}[A \cos \omega r+B \sin \omega r] \exp \left(-\alpha^{2} \omega^{2} t\right),
$$

where A, B, C, D are constants.
[10 marks]
The object is initially at temperature ϕ_{0} and is placed in a bath of water at temperature ϕ_{1}. Show that the solution which satisfies the boundary conditions that $\phi(r, 0)=\phi_{0}$ for $0 \leq r<R$, and $\phi(R, t)=\phi_{1}$ for all $t \geq 0$, is

$$
\phi(r, t)=\phi_{1}+\left(\phi_{0}-\phi_{1}\right) \sum_{n \geq 1} b_{n} \frac{\sin (n \pi r / R)}{(n \pi r / R)} \exp \left(-\alpha^{2} n^{2} \pi^{2} t / R^{2}\right)
$$

where the b_{n} are constants.

Explain in principle how the orthogonality relation

$$
\frac{2}{R} \int_{0}^{R} \sin (n \pi r / R) \sin (m \pi r / R) d r=\delta_{m n}
$$

and the boundary condition at $t=0$ can be used to find the constants b_{n}. It is not expected that you evaluate the constants.

