# King's College London 

## University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP/2260 Mathematical Methods in Physics II

Summer 2003

Time allowed: THREE Hours

Candidates should answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

## SECTION A - Answer SIX parts of this section

1.1) A general curvilinear orthogonal coordinate system $\left(q_{1}, q_{2}, q_{3}\right)$ is given by the transformation functions:

$$
x=x\left(q_{1}, q_{2}, q_{3}\right), \quad y=y\left(q_{1}, q_{2}, q_{3}\right), \quad z=z\left(q_{1}, q_{2}, q_{3}\right)
$$

Show that the unit base vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and the scale factors $h_{1}, h_{2}, h_{3}$ in this system are given, respectively, by the following relations:

$$
\mathbf{e}_{i}=\frac{1}{h_{i}}\left(\frac{\partial \mathbf{r}}{\partial q_{i}}\right), \quad h_{i}=\left|\frac{\partial \mathbf{r}}{\partial q_{i}}\right| .
$$

1.2) Consider the spherical polar coordinates $(r, \theta, \phi)$,

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

where $r \geq 0,0 \leq \theta \leq \pi$ and $0 \leq \phi<2 \pi$. Determine the scale factors $h_{r}, h_{\theta}, h_{\phi}$ for this system and the unit base vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}$.
1.3) Evaluate the integral

$$
\int_{-\infty}^{\infty} \delta\left(\frac{x}{5}-1\right) f(x) \mathrm{d} x
$$

where $f(x)$ is any continuous function.
1.4) Give a formal definition of the integral Fourier transform, $F(\nu)=\mathcal{F}[f(t)]$, and its inverse, $f(t)=\mathcal{F}^{-1}[F(\nu)]$, for a function $f(t)$ defined in the interval $-\infty<t<\infty$. Hence derive the following integral representation for the delta function:

$$
\delta(t)=\int_{-\infty}^{\infty} e^{\mathrm{i} 2 \pi \nu t} \mathrm{~d} \nu
$$

1.5) Show that the Fourier transform of the function $f(t)=e^{-\alpha|t|}$ is

$$
\mathcal{F}[f(t)]=\frac{2 \alpha}{\alpha^{2}+(2 \pi \nu)^{2}}
$$

Hint: when calculating the transform, split the integral over $t$ into two: one with $t \leq 0$ and another with $t \geq 0$.
1.6) Specify and classify the singular points of the differential equation

$$
\left(x^{2}-1\right)(x-4) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}+(x+1) y=0
$$

1.7) Verify that the function

$$
y(x, t)=y_{1}(x+c t)+y_{2}(x-c t)
$$

with arbitrary functions $y_{1}(x)$ and $y_{2}(x)$ is a solution of the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

1.8) Use the generating function

$$
G(x, t)=\frac{1}{\sqrt{1-2 x t+t^{2}}}
$$

for the Legendre polynomials $P_{n}(x)$ to derive explicit expressions for the polynomials with $n=0,1$.

## SECTION B - Answer TWO questions

2) The parabolic coordinates $(u, v, \theta)$ are specified by the following transformation equations:

$$
x=u v \cos \theta, y=u v \sin \theta, \quad z=\frac{1}{2}\left(u^{2}-v^{2}\right),
$$

where $u \geq 0, v \geq 0$ and $0 \leq \theta<2 \pi$.
a) Show that the scale factors $h_{u}, h_{v}, h_{\theta}$ have the form:

$$
h_{u}=h_{v}=\sqrt{u^{2}+v^{2}}, \quad h_{\theta}=u v
$$

b) Show that the unit base vectors $\mathbf{e}_{u}, \mathbf{e}_{v}, \mathbf{e}_{\theta}$ can be expressed via the Cartesian vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ as follows:

$$
\begin{gathered}
\mathbf{e}_{u}=\frac{v}{\sqrt{u^{2}+v^{2}}}\left(\cos \theta \mathbf{i}+\sin \theta \mathbf{j}+\frac{u}{v} \mathbf{k}\right) \\
\mathbf{e}_{v}=\frac{u}{\sqrt{u^{2}+v^{2}}}\left(\cos \theta \mathbf{i}+\sin \theta \mathbf{j}-\frac{v}{u} \mathbf{k}\right) \\
\mathbf{e}_{\theta}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
\end{gathered}
$$

c) Show that the parabolic coordinate system is orthogonal.
d) Given that the Laplacian operator $\nabla^{2}$ of a scalar field $\Psi(x, y, z)$ in the general othogonal curvilinear coordinates $\left(q_{1}, q_{2}, q_{3}\right)$ is

$$
\nabla^{2} \Psi=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \Psi}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial \Psi}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \Psi}{\partial q_{3}}\right)\right]
$$

show that the Laplace equation $\nabla^{2} \Psi(x, y, z)=0$ can be rewritten in the parabolic coordinates in the following form:

$$
\frac{1}{u^{2}+v^{2}}\left[v \frac{\partial}{\partial u}\left(u \frac{\partial \Psi}{\partial u}\right)+u \frac{\partial}{\partial v}\left(v \frac{\partial \Psi}{\partial v}\right)\right]+\frac{1}{u v} \frac{\partial^{2} \Psi}{\partial \theta^{2}}=0
$$

3) Let $F(\nu)=\mathcal{F}[f(t)]$ be the Fourier transform of a function $f(t)$. You may assume that $f(t)$, its first and second order derivatives tend to zero at $\pm \infty$.
a) Prove the following identity which is sometimes called the modulation theorem:

$$
\mathcal{F}\left[f(t) \cos \left(2 \pi \nu_{0} t\right)\right]=\frac{1}{2}\left[F\left(\nu+\nu_{0}\right)+F\left(\nu-\nu_{0}\right)\right] .
$$

b) Express the Fourier transforms of $f^{\prime}(t)=\frac{\mathrm{d} f}{\mathrm{~d} t}$ and $f^{\prime \prime}(t)=\frac{\mathrm{d}^{2} f}{\mathrm{~d} t^{2}}$ in terms of $F(\nu)$. Hint: when calculating the Fourier transforms, use integration by parts.
[10 marks]
c) The $n$-th moment of a function $f(t)$ is given by the expression:

$$
\mu_{n}=\int_{-\infty}^{\infty} t^{n} f(t) \mathrm{d} t
$$

By considering derivatives of the Fourier transform $F(\nu)$, show that

$$
\mu_{n}=\frac{F^{(n)}(0)}{(-2 \pi \mathrm{i})^{n}}
$$

where $F^{(n)}(0)$ is the $n$-th derivative of $F(\nu)$ calculated at $\nu=0$.
d) Calculate the Fourier transform of the function $f(t)$ which is equal to unity if $0 \leq t \leq 1$ and zero otherwise.
4) Consider the Bessel differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-p^{2}\right) y=0
$$

a) Classify the singular points of this equation.
b) Assuming that the parameter $p$ in the Bessel equation is either noninteger or a negative number, use the Frobenius method to derive three first terms of two independent series solutions of the equation, $y_{1}(x)$ and $y_{2}(x)$.
c) Hence, state the general solution of the equation.
5) Consider the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

for a string of length $L$ fixed at both ends.
a) Use the Fourier method of separation of variables to obtain two ordinary differential equations: one involving $t$ and another $x$.
[6 marks]
b) Given that the separation constant $k=-p_{n}^{2}$, where $p_{n}=\frac{\pi}{L} n$ and $n=1,2,3, \ldots$, check that the appropriate solution of the equation involving $x$ which is consistent with the boundary conditions is $\psi_{n}(x)=\sin \left(p_{n} x\right)$.
c) Check that

$$
\chi_{n}(t)=A_{n} \sin \left(c p_{n} t\right)+B_{n} \cos \left(c p_{n} t\right)
$$

is a solution of the equation involving $t$, where $A_{n}$ and $B_{n}$ are arbitrary constants.
d) Now assume that initially (i.e. at $t=0$ ) the string is pulled by 0.06 units at $x=L / 5$ and then released, i.e. the initial conditions are:

$$
y(x, 0)=0.3 \frac{x}{L}
$$

for $0 \leq x \leq L / 5$ and

$$
y(x, 0)=0.075\left(1-\frac{x}{L}\right)
$$

for $L / 5 \leq x \leq L$ and also $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0$. Given that the general solution of the wave equation is

$$
y(x, t)=\sum_{n=1}^{\infty} \psi_{n}(x) \chi_{n}(t)
$$

determine the corresponding partial solution of the wave equation.
Hint: the integral $\int x \sin \left(p_{n} x\right) \mathrm{d} x$ is calculated by parts.
[17 marks]
You may assume that functions $\psi_{n}(x)$ satisfy the orthogonality relation:

$$
\int_{0}^{L} \psi_{n}(x) \psi_{n^{\prime}}(x) \mathrm{d} x=\frac{L}{2} \delta_{n n^{\prime}}
$$

