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Throughout the paper, a dot over a letter corresponds to a time derivative.

SECTION A

Answer SECTION A on the question paper in the space below each question.
If you require more space, use an answer book.

Answer as many part of this section as you wish.
The final mark for this section will be capped at 40.

1.1 Calculate ∫ 1

0

dx xex

[4 marks]

1.2 Define an inertial frame.
[3 marks]

SEE NEXT PAGE
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1.3 Explain wether the following integrals converge or diverge∫ ∞

0

dx
cos x

x2

∫ ∞

0

dx

√
x

sinh x

[4 marks]

1.4 A car is moving in a straight line, with a constant acceleration of 5 ms−2. Calculate
the angle a pendulum in the car makes with the vertical (the acceleration due to gravity
is g = 9.8 ms−2).

[5 marks]

SEE NEXT PAGE
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1.5 In two dimensions, the rotation by the angle π/3 is represented by the matrix(

1/2 −
√

3/2√
3/2 1/2

)
The vector u = (1, 3) is rotated by the angle π/3 into u′. Calculate the coordinates of u′

and check that |u′| = |u|.
[5 marks]

1.6 Compute the power which is required to stop a 104 kg truck with speed 90 kmh−1, in
10 seconds.

[3 marks]

SEE NEXT PAGE
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1.7 Solve the equation z3 = 1, where z is a complex number.

[4 marks]

1.8 State the parallel axis theorem.
[3 marks]

SEE NEXT PAGE
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1.9 Using complex numbers, show that

(sin x)3 =
3

4
sin(x)− 1

4
sin(3x)

[5 marks]

1.10 Show that the angular momentum of a point particle subjected to a central force is
conserved.

[5 marks]

SEE NEXT PAGE
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1.11 Prove that, for any real x, cosh2 x− sinh2 x = 1.

[5 marks]

1.12 Solve the equation ẍ + ω2x = 0 when x(0) = a and ẋ(0) = 0.
[5 marks]

SEE NEXT PAGE
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1.13 Derive the equation for the plane perpendicular to the vector u = (1, 2, 3), that
contains the point A of coordinates (3, 2, 1).

[4 marks]

1.14 A solid homogeneous cylinder of mass M , radius R and height H revolves about its
axis of cylindrical symmetry. Derive an expression for its moment of inertia about this
axis.

[5 marks]

SEE NEXT PAGE
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SECTION B - Answer TWO questions
Answer section B in an answer book

2. The aim of this question is to study, in two dimensions, some properties of a linear
transformation obtained by combining a rotation and a projection.

a) A rotation of the basis vectors i, j by the angle π/6 gives the vectors i′, j′. Express i′, j′

in terms of i and j, and infer that the matrix representing this rotation is

R =

( √
3/2 −1/2

1/2
√

3/2

)
.

(Hint: sin(π/6) = 1/2). Calculate the determinant of R. [8 marks]

b) The matrix representing the projection onto the straight line given by y = 2x is

P =

(
1/5 2/5
2/5 4/5

)
Calculate det(P) and P2, and explain the significance of these results in terms of the
mapping provided by the projection. [7 marks]

c) Justify that the matrix M = RP−PR has an inverse. Calculate its inverse and show
that

M−1 = 4M

[8 marks]

d) Show that M2 represents a scaling, and give the corresponding scale factor. [7 marks]

SEE NEXT PAGE

9



4CCP1350

3. The equation for the elliptical trajectory of the Earth orbiting the Sun is

r =
R

1 + a cos θ
,

where (r, θ) are the polar coordinates centered at the Sun, and the constants R and a < 1
are to be determined.

a) Show that the energy E of the Earth and the projection of its the angular momentum
L on the axis perpendicular to the trajectory are

E =
1

2
m

(
(ṙ)2 + (rθ̇)2

)
− GMm

r

L = mr2θ̇

where m and M are respectively the masses of the Earth and the Sun. [6 marks]

b) Show that, at any point of the trajectory,

ṙ =
L

mR
a sin θ

rθ̇ =
L

mR
(1 + a cos θ)

[8 marks]

c) Show that the energy of the Earth can be written

E =
m

2

(
L

mR

)2

(1 + a2)− GMm

R
+ ma cos θ

[(
L

mR

)2

− GM

R

]
,

and conclude that

R =
L2

GMm2

[8 marks]

d) Give an expression for the eccentricity a in terms of the energy, and conclude that

|E| ≤ GMm

2R

[8 marks]

SEE NEXT PAGE
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4. If x is a real argument, consider the differential equation (E)

y′ +

[
x2 − x3 − 1

x2(1− x2)

]
y =

1

x2
√

1− x2
,

where the function y is to be determined, and y′ is its derivative with respect to x.

a) State for what range of values of x the equation (E) is defined, and show that

x2 − x3 − 1

x2(1− x2)
=

d

dx

(
1

x
+

1

2
ln(1− x2)

)
[4 marks]

b) Show that the general solution of the homogeneous differential equation associated with
(E) is

yh(x) =
y0e

−1/x

√
1− x2

,

where y0 is a constant. [8 marks]

c) Give the limit of yh(x) when x → 0, with x > 0. [4 marks]

d) Using the variation of parameter method, show that the general solution of the equation
(E) is

y =
y0e

−1/x − 1√
1− x2

[8 marks]

e) Show that, if y0 = e, the solution of question d) is finite when x → 1. [6 marks]

SEE NEXT PAGE
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5. The aim of this question is to study the effect of the Coriolis force on the trajectory
of a ball bowled down a bowling alley. The bowling venue, located at the latitude λ and
with bowling lanes in the direction South-North, is a non-inertial frame, due to the Earth
spinning with angular velocity Ω. In what follows, the x-axis is in the direction West-East,
with its basis vector i towards the East; the y-axis is in the direction of the lanes, with
its basis vector j towards the North; the z-axis is vertical, making the angle λ with the
equatorial plane. The bowling ball, of mass m, is thrown from the origin of the coordinates,
with initial velocity v0j, and the Coriolis force is f = 2mΩv×n, where v is the velocity of
the bowling ball, and n is the unit vector along the polar axis of the Earth.

a) Write the equations of motion in the horizontal plane (x, y), and neglecting ż. Perform
a first integration, taking into account the initial conditions, and show that, if xΩ << v0,

ẋ = 2Ωy sin λ and ẏ = v0

[7 marks]

b) Show that the deviation of the trajectory from the line x = 0 is towards the East and
is equal to

δ(t) = Ωv0t
2 sin λ

Explain whether the effect of the Coriolis force is more or less important at the North Pole
than on the Equator. [6 marks]

c) The length of the bowling lanes is L. Show that the deviation from the line x = 0, at
the end of the trajectory, is

δend = Ω
L2

v0

sin λ

The bowling venue is located in London, with latitude 50◦, the length of the bowling lanes
is 20 m, and the Earth makes a complete rotation in 24 hours. Calculate the deviation δend

for a bowling ball thrown with speed 5 ms−1, and discuss the significance of the result.
[7 marks]

d) The equation of motion along the z-axis has been neglected. Discuss its relevance.
[4 marks]

e) Show that, if ΩL << v0 and if the ball does not slip, the kinetic energy of the ball at
the end of the trajectory is

Ek =
7

10
mv2

0

[6 marks]
FINAL PAGE
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