King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

4CCP1350 / CP1350 Mathematics and Mechanics for Physics I

Examiner: Professor Alison Mainwood and Dr Jean Alexandre

Summer 2008

Time allowed: THREE Hours

Answer SECTION A on the question paper.
Candidates may answer as many parts as they wish from SECTION A, but the total mark for this section will be capped at 40 .

Candidates should answer no more than TWO questions from SECTION B. No credit will be given for answering a further question from this section.

The approximate mark for each part of a question is indicated in square brackets.

You may use a College-approved calculator for this paper. The approved calculators are the Casio fx83 and Casio fx85.

DO NOT REMOVE THIS EXAM PAPER FROM THE EXAMINATION ROOM.

Throughout this paper, t denotes the time, and a dot over a letter denotes a time derivative. $\vec{e}_{r}, \vec{e}_{\theta}$ are the usual orthogonal basis vectors in polar coordinates, with $\dot{\vec{e}}_{r}=\dot{\theta} \vec{e}_{\theta}, \dot{\vec{e}_{\theta}}=-\dot{\theta} \vec{e}_{r}$.

SECTION A
 Answer as many parts of this section as you wish. The final mark for this section will be capped at 40 .

1.1) Solve the following equation for real x :

$$
\sinh x+\cosh x=3
$$

1.2) Show that for any two complex numbers, z_{1} and $z_{2},\left|z_{1}\right|\left|z_{2}\right|=\left|z_{1} z_{2}\right|$.
1.3) Explain why the following matrix has no inverse.

$$
\left(\begin{array}{ll}
x^{2} & x \\
x y & y
\end{array}\right)
$$

[4 marks]
1.4) Use De Moivre's Theorem to find an expression for $\cos 3 \theta$ in terms of $\cos \theta$.
[6 marks]
1.5) Define an inertial frame.
[2 marks]
1.6) Derive a relation between the power of a force acting on a particle and the kinetic energy of this particle.
[3 marks]
1.7) Give an expression for the Coriolis force, and explain its origin.
1.8) A car is moving with a constant acceleration of $4 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Calculate the angle which a simple pendulum in the car makes with respect to the vertical (the acceleration due to gravity is $g \simeq 9.8 \mathrm{~m} . \mathrm{s}^{-2}$).
[4 marks]
1.9) A comet is travelling on an elliptical trajectory. At what points, on this trajectory, is the comet's velocity perpendicular to its acceleration?
[4 marks]
1.10) A point particle moves with constant angular velocity ω on a circular trajectory of radius R. Derive expressions for its velocity \vec{v} and acceleration \vec{a}.
[5 marks]
1.11) What is a central force? State which quantity is conserved in motion generated by such a force. Describe the trajectory of a point particle travelling under the influence of a central force.
[4 marks]
1.12) Write down the general forms of the different Kepler trajectories. Give the sign of the energies of particles travelling on each trajectory (assuming that the potential vanishes at infinity).
[4 marks]
1.13) Three solid balls are arranged on a straight line. The first, of mass 1 kg , is at the origin $\left(x_{1}=0\right)$, the second, of mass 2 kg , is located 1 meter away ($x_{2}=1 \mathrm{~m}$) and the third, of mass 3 kg , is 2 meters away from the origin $\left(x_{3}=2 \mathrm{~m}\right)$. Calculate the coordinate x_{C} of the centre of mass of the system.
[4 marks]
1.14) A rigid homogeneous disc of mass M and radius R revolves about its axis of symmetry perpendicular to the disc. Give an expression for its moment of inertia about this axis.
[3 marks]
1.15) A rigid homogeneous ball of mass M and radius R rolls downhill without slipping; its centre of mass has velocity \vec{v}. The moment of inertia of the ball with respect to an axis of symmetry is $\frac{2}{5} M R^{2}$. Show that the kinetic energy of the ball is $\frac{7}{10} M v^{2}$.

SECTION B - Answer TWO questions

2)

Find the particular solution of the first order differential equation

$$
\tan x \frac{d y}{d x}+y=\sin x \tan x
$$

if y is finite when $x=0$.
[22 marks]
Differentiate the particular solution to demonstrate that it satisfies the original differential equation.
[8 marks]
[Hint: The integrating factor of a differential equation of the form

$$
\frac{d y}{d x}+y P(x)=Q(x)
$$

is given by $\left.\exp \left(\int P(x) d x\right)\right]$
3) A point mass m moving along the x-axis can oscillate under the influence of the restoring force $-k x$. These oscillations are damped, due to the friction force $-\lambda \dot{x}$ (k and λ are positive constants).
a) Show that the equation of motion can be written as

$$
\ddot{x}+2 \frac{\dot{x}}{\tau}+\omega^{2} x=0
$$

and give expressions for τ and ω in terms of m, k, λ.
[5 marks]
b) If $\omega \tau>1$ (weak damping), show that the general solution of the equation of motion is

$$
x(t)=C \exp \left(-\frac{t}{\tau}\right) \cos (\Omega t+\phi)
$$

where C, ϕ are constants of integration and $\Omega=\sqrt{\omega^{2}-1 / \tau^{2}}$.
[7 marks]
c) Derive an expression for the specific solution corresponding to the initial conditions $x(0)=x_{0}$ and $\dot{x}(0)=0$.
d) When $\omega \tau \gg 1$ show that the total energy of the oscillator is

$$
E \simeq \frac{k^{2}}{2} x_{0}^{2} \exp \left(-\frac{2 t}{\tau}\right)
$$

[8 marks]
e) Show that the rate of change of energy during the time $\Delta t \ll \tau$ is

$$
\left|\frac{\Delta E}{E}\right| \simeq 2 \frac{\Delta t}{\tau}
$$

[5 marks]
4) An electron of mass m and charge q is scattered by a (negative) fixed charge q^{\prime}, centred at the origin of the coordinates O. The trajectory is hyperbolic, and the initial velocity of the electron is \vec{v}_{0}, along one of the asymptotes of the trajectory, which is at a distance b from O (see figure).

a) Show that the angular momentum $\overrightarrow{\mathcal{L}}$ is conserved and, using polar coordinates centred on O, show that $\overrightarrow{\mathcal{L}}=-m b v_{0} \vec{k}$, where \vec{k} is the unit vector perpendicular to plane of the trajectory.
[8 marks]
b) Show that the total energy of the electron is given by

$$
E=\frac{1}{2} m(\dot{r})^{2}+\frac{1}{2} m \frac{b^{2} v_{0}^{2}}{r^{2}}-\frac{q q^{\prime}}{4 \pi \epsilon_{0} r} .
$$

[5 marks]
c) Show that the distance of closest approach between the electron and the fixed charge is $d=\sqrt{a^{2}+b^{2}}-a$, where $a=q q^{\prime} /\left(4 \pi \epsilon_{0} m v_{0}^{2}\right)$.
d) The equation of the trajectory, in polar coordinates, can be written as

$$
r=R /(e \cos \theta-1)
$$

where R and e depend on the parameters of the problem and $e>1$. Show that the distance d calculated in c) satisfies

$$
R \cos \theta_{0}=d\left(1-\cos \theta_{0}\right)
$$

where θ_{0} is half the largest angle between the asymptotes, as shown on the figure.
[7 marks]
e) If the charge q^{\prime} is positive instead, sketch the hyperbolic trajectory together with the centre of the force, showing the asymptotes.
[3 marks]
5) A majorette throws a stick of mass m and length l vertically, so that the centre of mass of the stick reaches a height h. In this question, heights are measured from the hand of the majorette. The centre of mass of the stick has initial speed v_{0}, and its initial angular velocity in its centre of mass frame is ω_{0}.
a) The stick can be assumed to be a homogeneous rod. Show that its moment of inertia, with respect to the axis of rotation perpendicular to the rod and passing through its centre of mass is

$$
I=\frac{1}{12} m l^{2} .
$$

[5 marks]
b) Show that the total energy of the stick is

$$
E=\frac{1}{2} m(\dot{z})^{2}+\frac{1}{24} m l^{2} \omega^{2}+m g z
$$

where z and \dot{z} are the height and the speed, respectively, of its centre of mass, and ω is its angular velocity in the centre of mass frame.
[5 marks]
c) If air friction can be neglected, explain why the angular velocity of the stick is conserved as the stick travels upwards, and show that

$$
h=\frac{v_{0}^{2}}{2 g} .
$$

[7 marks]
d) Air friction induces a torque $-\lambda \omega$ in the centre of mass frame of the stick, where λ is a constant. Show that in this case the angular velocity is given by

$$
\omega(t)=\omega_{0} \exp \left(-\frac{\lambda t}{I}\right)
$$

[8 marks]
e) Assuming that friction does not affect the translational motion, show that, when the stick is caught by the majorette, its angular velocity is

$$
\omega_{1}=\omega_{0} \exp \left(-\frac{2 \lambda v_{0}}{g I}\right)
$$

