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1. Consider the problem of the maximizing with respect to the parameters θ the

marginal likelihood p(x|θ) =
∑

z p(x, z|θ) for a vector x of observed random

variables. Here the variables z are hidden, i.e. unobserved, and the sum runs

over all possible values of z.

(a) [10 points] Prove that, for any probability distribution q(z),

ln p(x|θ) = L(q,θ) + KL(q||p)

where

L(q,θ) =
∑
z

q(z) ln

(
p(x, z|θ)

q(z)

)
KL(q||p) =

∑
z

q(z) ln

(
q(z)

p(z|x,θ)

)

(b1) [5 points] The E-step of the EM algorithm consists of maximizing L(q,θold)

over q at fixed θ = θold. Show that this gives q(z) = p(z|x,θ).

(b2) [10 points] The M-step consists of maximizing L(q,θ) over θ at fixed

q. Show that for the q obtained from the E-step, this is equivalent to

maximizing the function

Q(θ,θold) =

∫
dz p(z|x,θold) ln p(x, z|θ)

If the maximum occurs at θ = θnew, show that ln p(x|θnew) ≥ ln p(x|θold).

(c) Consider now the problem of maximizing the likelihood of N observed

datapoints x = (x1, . . . , xN) under a Gaussian mixture model with K

components, where

p(x|θ) =
N∏
n=1

(
K∑
k=1

πk(2πσ
2
k)
−1/2e−(xn−µk)2/(2σ2

k)

)
and θ = (π1, . . . πK , µ1, . . . , µK , σ1, . . . , σK) collects all parameters.

(c1) [10 points] Let znk ∈ {0, 1} with
∑

k znk = 1 ∀n ∈ {1, . . . , N} be 1-of-K

variables indicating which mixture component k data point xn is being

generated from. Write down the appropriate p(x|z,θ) and p(z|θ), where

z = (z11, . . . , zNK), and show that p(x|θ) =
∑

z p(x, z|θ).

(c2) [15 points] Find the function Q(θ,θold). Add to this a Lagrange mul-

tiplier term −λ
∑K

k=1 πk to enforce the constraint
∑

k πk = 1. Find the

conditions for Q to have a maximum with respect to θ, and hence derive

the EM update equations for θ.

See Next Page
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2. Consider Bayesian linear regression. The output distribution given an input

vector x and weights w ∈ RM is

p(t|x,w, β) = [β/(2π)]1/2e−β[t−wTφ(x)]2/2

Here φ(x) = (φ1(x), . . . , φM(x)) is a vector of fixed basis functions, and t can

be viewed as the clean output wTφ(x) corrupted by Gaussian noise of variance

β−1. The prior over the weights is p(w|α) = [α/(2π)]M/2 exp(−αwTw/2).

Assume you are given a data set of N training inputs x1, . . . ,xN and associ-

ated outputs t1, . . . , tN , corrupted by i.i.d. noise as specified above. Abbreviate

t = (t1, . . . , tN)T. All probabilities below are conditional on the training inputs.

(a) [15 points] Write down the posterior distribution p(w|t, α, β). By com-

pleting the square, show that it is a Gaussian distribution N (w|mN ,SN)

with mean and covariance matrix

mN = βSNΦTt, SN = (αI + βΦTΦ)−1

Here I is the M ×M identity matrix, and the matrix Φ has entries Φnj =

φj(xn).

(b) [15 points] Show that the predictive distribution p(t̂|x̂, t, α, β) for the

output t̂ at test input x̂ is a Gaussian distribution N (t̂|m(x̂), v(x̂)) with

mean and variance

m(x̂) = mT
Nφ(x̂), v(x̂) = β−1 + φ(x̂)TSNφ(x̂)

Discuss how this result differs from what would be obtained by predicting

with the maximum likelihood weight estimate w = mN .

(c) [20 points] Show that the marginal likelihood of the observed training

data is

ln p(t|α, β) =
M

2
lnα +

N

2
ln

(
β

2π

)
− β

2
tTt +

1

2
mT

NS−1
N mN +

1

2
ln |SN |

Explain why maximizing this quantity with respect to α and β is a rea-

sonable method for setting these hyperparameters.

You may, if you wish, use without proof the following property of the linear

Gaussian model: if x is a vector of Gaussian random variables and y is Gaussian

conditionally on x, so that p(x) = N (x|µ,Σ) and p(y|x) = N (y|Ax + b,V),

then p(y) = N (y|Aµ + b,V + AΣAT).

See Next Page
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3. Consider Bayesian discriminative binary classification. We encode class C1 as

output t = 1, and class C2 as t = 0. The output distribution given an input

vector x and weights w ∈ RM is

p(t = 1|x,w) = σ(wTφ(x)), p(t = 0|x,w) = 1− p(t = 1|x,w)

Here φ(x) = (φ1(x), . . . , φM(x)) is a vector of fixed basis functions. The

squashing function σ obeys 0 < σ(a) < 1, is monotonically increasing, and

has the symmetry σ(−a) = 1 − σ(a). The prior over the weights is p(w) =

[α/(2π)]M/2 exp(−αwTw/2).

Assume you are given a data set of N training inputs x1, . . . ,xN and asso-

ciated outputs t1, . . . , tN . Abbreviate t = (t1, . . . , tN)T. All probabilities below

are conditional on the training inputs.

(a) [20 points] Show that the posterior distribution p(w|t) has the form

p(w|t) = exp[−E(w)]/Z with

E(w) =
α

2
wTw−

N∑
n=1

[tn lnσ(an) + (1− tn) lnσ(−an)] , an = wTφ(xn)

Find the gradient of E(w). Show that the Hessian of E(w) is

∇∇E(w) = αI +
N∑
n=1

φ(xn)φ(xn)T[tng(an) + (1− tn)g(−an)]

with g(a) = [σ′(a)/σ(a)]2− σ′′(a)/σ(a) and I the M ×M identity matrix.

Hence show that, if the function − ln(σ(a)) is convex, the Hessian of E is

positive definite. What does this imply about uniqueness of the maximum

a posteriori (MAP) weights wMAP?

(b) [15 points] Assuming that wMAP has been determined numerically, state

the Laplace approximation q(w) to the posterior p(w|t). Show that the

resulting approximate predictive distribution for the output t̂ at test input

x̂ is

q(t̂ = 1|x̂, t) =

∫
σ(a)N (a|wT

MAPφ(x̂),φ(x̂)TA−1φ(x̂)) da

for an appropriate matrix A.

(c) [15 points] For the case of the inverse probit squashing function, σ(a) =∫ a
−∞N (x|0, 1) dx, find the integral∫

σ(a)N (a|µ, σ2) da

See Next Page
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explicitly. Hence give an explicit expression for q(t̂ = 1|x̂, t) for this case.

Hint: You may want to change variables to z = (a − µ)/σ, differentiate

the integral with respect to µ, and then integrate over µ again at the end.
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