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1. We consider unsupervised competitive learning processes in which N code-book

vectors mi ∈ Rn evolve stochastically according to

mi(`+1) = mi(`) + ηFi[x(`),{m(`)}] (x(`)−mi(`))

Here η > 0 and {m(`)} is a shorthand for m1(`), . . . ,mN(`). The data vectors

x(`) ∈ Rn are drawn independently at random at each step ` = 0, 1, 2, . . .

according to a probability density p(x).

(a) [10 points] Define Vector Quantization (VQ) in terms of Voronoi tessel-

lations and show that it is of the form above.

(b) [10 points] Give the form of the function Fi[x,{m}] for Soft Vector Quan-

tization (SVQ). Show that in an appropriate limit this reduces to the

corresponding function for VQ.

(c) If we define a normalized time t = η` then for η → 0 the above discrete-

time process reduces to the coupled deterministic equations

d

dt
mi =

∫
dx p(x) Fi[x,{m}] (x−mi) (∗)

(c1) [12 points] Show that for SVQ the equations (∗) are of gradient form, i.e.

that for an appropriate functionE[{m}] we have dmi/dt = −∇mi
E[{m}].

The function E should depend on a trial distribution q(x) that is deter-

mined by the code-book vector positions. Describe (without proofs) the

meaning of the function E.

(c2) [8 points] Now consider exponentially weighted SVQ, defined by

Fi[x,{m}] =
ewi−β|x−mi|2∑N
j=1 e

wj−β|x−mj |2

for β > 0 and weights wi, i = 1, . . . , N . Show that also for this case the

equations (∗) are of gradient form, where in the trial distribution q(x)

each code-book vector contributes with weight ewi/
∑N

j=1 e
wj .

(c3) [10 points] Assume that now also the weights wi are allowed to evolve, by

gradient descent dwi/dt = −∂E/∂wi on the function E for weighted SVQ

from (c2). Find an explicit expression for dwi/dt and show that, if the pro-

cess reaches a stationary state, then
∫
dx p(x)Fi[x,{m}] = ewi/

∑N
j=1 e

wj .

See Next Page
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2. We consider Bayesian regression. A neural network produces an output t ∈ R
for every input vector ξ ∈ RN , subject to zero mean additive noise. It is

parametrized by a weight vector w ∈ RM , such that

p(t|ξ,w) = P (t− f(ξ,w))

where P (z) is some probability distribution over z with zero mean and variance

σ2. The data used in training this system consist of p pairs of inputs and

corresponding outputs, D = {(ξ1, t1), . . . , (ξ
p, tp)}.

(a) [16 points] Give an expression for the predictive distribution p(t|ξ, D),

in terms of the posterior p(w|D). Derive the following expressions for

the predictive mean t?(ξ) =
∫
dt t p(t|ξ, D) and variance [∆t?(ξ)]2 =∫

dt t2 p(t|ξ, D)− [
∫
dt t p(t|ξ, D)]2:

t?(ξ) =

∫
dw f(ξ,w)p(w|D)

[∆t?(ξ)]2 = σ2 +

∫
dw f 2(ξ,w)p(w|D)−

[∫
dw f(ξ,w)p(w|D)

]2

(b) Now consider radial basis function networks with f(ξ,w) = w · φ(ξ)

=
∑M

i=1wiφi(ξ), where φ = (φ1, . . . , φM) is a vector of M basis functions.

Also assume a Gaussian prior onw, p(w) = (2π)−M/2(detC)−1/2e−w·C−1w/2

with a covariance matrix C. Finally, let the noise be Gaussian, P (z) =

(2πσ2)−1/2 exp[−z2/(2σ2)].

(b1) [20 points] Show that the posterior distribution p(w|D) is a Gaussian

with means and covariances (abbreviating 〈. . .〉 =
∫
dw . . . p(w|D))

〈w〉 = A−1c, c = σ−2

p∑
µ=1

tµφ(ξµ) 〈wiwj〉 − 〈wi〉 〈wj〉 = (A−1)ij

where A is an M ×M matrix with elements

Aij = (C−1)ij + σ−2

p∑
µ=1

φi(ξ
µ)φj(ξ

µ) .

(b2) [14 points] Use the results of (a) and (b1) to derive

t?(ξ) = φ(ξ) ·A−1c, ∆t?(ξ) =
√
σ2 + φ(ξ) ·A−1φ(ξ)

You may, if you wish, use without proof the identity (where A is a symmetric

and positive definite matrix):∫
du uiuje

− 1
2
u·Au∫

du e−
1
2
u·Au

= (A−1)ij

See Next Page



- 4 - 7CCMNN15 (CMNN15)

3. We consider Bayesian classification. A neural network produces a binary output

t ∈ {−1, 1} for every input vector ξ ∈ RN . It implements a noisy classifier

parametrized by a weight vector w ∈ RN , such that

p(t|ξ,w) =
1

2
[1 + t g(ξ,w)]

for a suitable function g(ξ,w). The data used in training this system consist of

p pairs of inputs and corresponding outputs: D = {(ξ1, t1), . . . , (ξ
p, tp)}.

(a1) [6 points] Give an expression for p(t|ξ, D), the conditional output distri-

bution given the data D, in terms of p(w|D).

(a2) [6 points] Assume that the network prediction t?(ξ) for the classification

of ξ and its uncertainty ∆t?(ξ) are defined as usual:

t?(ξ) =

{
1 if p(1|ξ, D) > 1/2

−1 if p(−1|ξ, D) > 1/2
∆t?(ξ) =

{
p(−1|ξ, D) if t?(ξ) = 1

p(1|ξ, D) if t?(ξ) = −1

Explain the precise meaning of ∆t?(ξ).

(a3) [10 points] Prove the following statements:

t?(ξ) = sgn(I(ξ, D)) ∆t?(ξ) =
1

2
− 1

2
|I(ξ, D)|

in which I(ξ, D) =
∫
dw g(w · ξ) p(w|D).

(b) [6 points] Assume now that g(ξ,w) = (1−2ε)sgn(ξ ·w), with 0 ≤ ε ≤ 1
2
.

Show that for ε = 0 we have a noise-free classifier t = sgn(ξ · w), and

hence give an interpretation of ε in terms of noise strength.

(c) Let g be as in (b), and assume further that w, ξ ∈ R2 with |w| = |ξ| = 1.

Let input-output pairs be parameterized as tµξ
µ = (cos(φµ), sin(φµ)) and

the weight vector as w = (cos(ω), sin(ω)), with all angles in the range

[0, 2π). Assume a uniform prior over ω, p(ω) = 1/(2π), and consider a

data set D of p = 2 examples with φ1 = 0 and φ2 = π/2.

(c1) [8 points] For ε = 0, show that the posterior is

p(ω|D) =

{
2/π for 0 < ω < π/2

0 for π/2 < ω < 2π

Hint: Use that tµsgn(ξµ ·w) = sgn(cos(φµ − ω)).

See Next Page
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(c2) [12 points] For ε = 0 and a test input-output pair parameterized as

tξ = (cos(φ), sin(φ)), show that the predictive distribution has the form

p(t|ξ, D) =


1 for 0 < φ < π/2
2
π
(π − φ) for π/2 < φ < π

0 for π < φ < 3π/2
2
π
(φ− 3π/2) for 3π/2 < φ < 2π

[2 points] Explain why, even though ε = 0, this does not have the form

of a noise-free classifier where p(t|ξ, D) ∈ {0, 1} everywhere.

See Next Page
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4. Consider a zero-mean Gaussian process with covariance function C(ξ, ξ′). The

clean outputs yµ corresponding to fixed training outputs ξµ (µ = 1, . . . , p) then

have joint distribution

p(y) = (2π)−p/2(detC)−1/2 exp

(
−1

2
y ·C−1y

)
where the matrix C has entries Cµν = C(ξµ, ξν) and y = (y1, . . . , yp). Each

clean output is corrupted independently by noise. Given the clean output, the

noisy output tµ has distribution p(tµ|yµ) = (2πσ2)−1/2 exp[−(tµ − yµ)2/(2σ2)].

You may use throughout that for any symmetric and positive definite n× n
matrix A and for w,u ∈ Rn

∫
dw e−

1
2
w·Aw+iw·u =

[
(2π)n

detA

]1/2

e−
1
2
u·A−1u (∗)

(a) [4 points] Explain why the joint distribution of the noisy outputs t =

(t1 . . . tp) is given by p(t) =
∫
dy p(y)

∏p
µ=1 p(tµ|yµ).

[4 points] Use the relation (∗) to show that

p(tµ|yµ) =

∫
dkµ
2π

e−ikµ(tµ−yµ)−σ2k2
µ/2

(b) [6 points] Show that, with k = (k1 . . . kp),

p(t) =

∫
dk dy

exp[−ik · (t− y)− σ2

2
k2 − 1

2
y ·C−1y]

(2π)p(2π)p/2(detC)1/2

[8 points] Use (∗) to show that

p(t) =

∫
dk

exp[−ik · t− σ2

2
k2 − 1

2
k ·Ck]

(2π)p

[8 points] Use (∗) again to deduce

p(t) = (2π)−p/2(detK)−1/2 exp

(
−1

2
t ·K−1t

)
where the matrix K has entries Kµν = Cµν + σ2δµν .

(c) [6 points] Explain how the result for p(t) could have been obtained from

the fact that tµ = yµ + zµ with appropriate noise variables zµ.

See Next Page
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(d) [14 points] Consider the special case where Cµν = δµν . Simplify p(t) to

an expression depending on t only via t2, using the fact that the matrix

K is now a multiple of the identity matrix. Show that the noise level σ2

that maximizes ln p(t) obeys

1 + σ2 =
1

p

p∑
µ=1

t2µ

Give an interpretation of this result.
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