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Mixtures of Gaussians(1)
Old Faithful data set
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Mixtures of Gaussians(2)

Get a complex model from a combination of simple models
p(X) =

∑K
k=1 πkN (X |µk,Σk )

e.g., for K = 3

x

p(x)

πk are the Mixing coefficients

and N (X |µk,Σk ) are the components

Note that ∀k : πk ≥ 0 and from normalization
∑K

k=1 πk = 1.
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Mixtures of Gaussians(3)

An illustration of a mixture of 3 Gaussians in two-dimensional space
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A demonstration for the responsibilities
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Example of 500 points drawn from the mixture of 3 Gaussians. (a) Samples from the joint distribution

p(z)p(x|z) in which the three states of z, corresponding to the three components of the mixture, are depicted in

red, green, and blue, and (b) the corresponding samples from the marginal distribution p(x), which is obtained by

simply ignoring the values of z and just plotting the x values. The data set in (a) is said to be complete, whereas

that in (b) is incomplete. (c) The same samples in which the colours represent the value of the responsibilities

γ(znk) associated with data point xn, obtained by plotting the corresponding point using proportions of red,

blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively.
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The Maximum Likelihood (M-L) approach

One can estimate the parameters π,µ and Σ by maximizing the
log-likelihood

ln p(X|π,µ,Σ) =
∑N

n=1 ln
{∑K

k=1 πkN (xn |µk,Σk )
}

with respect to π,µ and Σ.

Difficulties:

(a) Because of the sum inside the logarithm there is no closed
form solution.

(b) Over-fitting. x

p(x)

(c) ...
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Over-fitting - singularities in the M-L approach

Look at the log-likelihood function

ln p(X|π,µ,Σ) =
∑N

n=1 ln
{∑K

k=1 πkN (xn |µk,Σk )
}

,

and suppose (for simplicity) that for one of the components k

Σk = σ2kI.

µk is exactly equal to one of the data, i.e. µk = xn for some
n.

In that case we obtain N
(
xn|xn, σ2kI

)
= 1√

2π
1
σk

.

If we consider σk → 0 then we see that this component goes to
infinity, and so the log-likelihood function diverges. In other words,
the log-likelihood function is not bounded, which renders the
problem of finding its maximum ill-posed!

This cannot happen for a single Gaussian!
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Further problems with M-L - identifiability

(a) Because of the sum inside the logarithm there is no closed
form solution.

(b) Over-fitting / Singularities in the log-likelihood function.

(c) Identifiability: For any given maximum-likelihood solution,
a K-component mixture will have K! equivalent solutions
corresponding to the K! ways of assigning K sets of
parameters to K components.
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Summary of EM for Gaussian Mixtures

1. Initialize the means µk, covariances Σk and mixing
coefficients πk, and evaluate the initial value of the
log-likelihood.

2. E step. Evaluate the responsibilities using the current
parameter values γ(znk) = πkN (xn|µk,Σk )∑K

j=1 πjN (xn|µj ,Σj )
.

3. M step. Re-estimate the parameters using the current
responsibilities
µnewk = 1

Nk

∑N
n=1 γ(znk)xn,

Σnew
k = 1

Nk

∑N
n=1 γ(znk)(xn − µnewk )(xn − µnewk )T ,

πnewk = Nk
N ,

with Nk =
∑N

n=1 γ(znk).

4. Evaluate the log-likelihood ln p(X|µ,Σ,π) and check for
convergence. If not converged, return to step 2.
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Illustration of the EM algorithm using the Old Faithful set
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Summary of the General EM Algorithm

1. Choose an initial setting for the parameters θold.

2. E step. Evaluate p
(
Z|X,θold

)
.

3. M step. Evaluate θnew given by

θnew = max arg
θ
Q(θ,θnew),

where
Q(θ,θnew) =

∑
Z p
(
Z|X,θold

)
ln p (X,Z|θ).

4. Check for convergence of either the log likelihood or the
parameter values. If the convergence criterion is not satisfied,
then let θnew → θold, and return to step 2.
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Decomposition of the log-likelihood function

Within the framework of the latent variables, the likelihood is
p(X|θ) =

∑
Z p(X,Z|θ)

Given a distribution q(Z) over the hidden variable Z, one can
always decompose:

ln p(X|θ) = L(q,θ) +KL(q||p)
where
L(q,θ) =

∑
Z q(Z) ln

{
p(X,Z|θ)
q(Z)

}
KL(q||p) = −

∑
Z q(Z) ln

{
p(Z|X,θ)
q(Z)

}
(Kullback-Leibler

divergence)

ln p(X|θ)L(q, θ)

KL(q||p)
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Increasing likelihood with the EM iterations

From this point of view the EM algorithm can be seen as a
two-stage iterative optimization technique for finding M-L
solutions:

1. E step. The lower bound L(q,θold) is maximized w.r.t.
q(Z) while keeping θold fixed. This is achieved by fixing
q(Z) = p(Z|X,θ) ⇔ KL(q||p) = 0.
2. M step. q(Z) is held fixed., and the lower bound L(q,θ)
is maximized w.r.t. θ, to give θnew. L(q,θ) will never
decrease in this step + typically the new KL(q||p) > 0.

ln p(X|θold)L(q, θold)

KL(q||p) = 0

ln p(X|θnew)L(q, θnew)

KL(q||p)
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Exercises you could try

9.7 /8 (Derivation of the EM equations)

9.25 (Properties of the lower bound L(q,θ))
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