The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13
Level III
Monday $29^{\text {th }}$ April 2013, 09:30-11:30
PHYSICS/ASTROPHYSICS
PHY-30029

QUANTUM PHYSICS II

Candidates should attempt to answer THREE questions.

A sheet of useful information can be found on page 7.

1. A sample of cold ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ molecules is exposed to a beam of neutn with typical energies 0.01 eV . The spring constant for the $\mathrm{C}-\mathrm{O}$ bond is $k=1900 \mathrm{Nm}^{-1}$.

The ground state of a simple harmonic oscillator with mass m is

$$
\psi_{0}(x)=\left(\frac{1}{a \sqrt{\pi}}\right)^{1 / 2} e^{-x^{2} / 2 a^{2}}
$$

where $a=\sqrt{\hbar / m \omega}$ and $\omega=\sqrt{k / m}$ and k is the spring constant. The energy levels of a simple harmonic oscillator are $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.
(a) Show that the energy of the neutrons is much less than the energy for vibration modes in the CO molecules.
(b) Show that for an instantaneous change in the mass from m to m^{\prime} the probability that the oscillator remains in the ground state is $\left|c_{0}\right|^{2}=2 /\left(\left(m^{\prime} / m\right)^{\frac{1}{4}}+\left(m / m^{\prime}\right)^{\frac{1}{4}}\right)$.
(c) Calculate the probability for a ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ molecule to be observed in the ground state following neutron capture to become ${ }^{13} \mathrm{C}^{16} \mathrm{O}$. State clearly any approximations you have made.
(d) Infrared radiation due to vibrational transitions $v=1 \rightarrow 0$ is observed from the cold CO gas, but only when it is exposed to the neutron beam. Explain this observation and state where the energy for this radiation comes from.

You can use the following integral without proof in your answer.

$$
\int_{-\infty}^{\infty} e^{-c x^{2}} d x=\sqrt{\frac{\pi}{c}}
$$

2. Consider an electron in the state α_{y}. (The Pauli spin matrices given on page 7 of this paper.)
(a) Write α_{y} as a linear superposition of α_{z} and β_{z} and hence show that the probability of observing this electron in the spin-down state on the z-axis is $\frac{1}{2}$.
(b) The Hamiltonian for the interaction of a localised electron with a magnetic field of strength B aligned with the z-axis is

$$
\hat{H}=\frac{e g B}{2 m_{e}} \hat{S}_{z}
$$

For an electron in the state α_{y} at time $t=0$ show that $\left\langle S_{y}\right\rangle=$ $\frac{\hbar}{2} \cos (2 \omega t)$, where $\omega=\frac{e g B}{4 m_{e}}$.
[50]
(c) Explain why the ability to manipulate electron spins may make it possible to build a quantum computer that can solve problems beyond the capabilities of digital computers.
3. The rotational energy levels of a rigid linear molecule are given

$$
E_{J}=B J(J+1),
$$

where $J=0,1,2,3, \ldots$ is the rotational quantum number and B is a constant.

Laser light scattered from C_{2} gas at room temperature shows a series of several emission lines offset from the frequency of the laser by $0.329 \mathrm{THz}, 0.768 \mathrm{THz}, 1.207 \mathrm{THz}$, etc.
(a) Explain the origin of these emission lines.
(b) Explain why the emission lines corresponding to odd J values are missing.
(c) What is the value of B for C_{2} in electron volts (eV)?
(d) The fraction of molecules with rotational quantum number J at temperature T is $\eta=(2 J+1) e^{-E_{J} / k_{B} T}$. Calculate the value of J for the most populated rotational energy level of C_{2} gas at room temperature.
(e) Why is a Raman spectrum with several emission lines unlikely to be due to vibrational Raman scattering?
4. Two ions are put in an entangled state

$$
|\psi\rangle=\frac{(1+i)}{2 \sqrt{2}}[|\uparrow \uparrow\rangle+i|\downarrow \downarrow\rangle-|\uparrow \downarrow\rangle+i|\downarrow \uparrow\rangle]
$$

A laser pulse is then used to detect whether the ions are in the same state, i.e., either $|\uparrow \uparrow\rangle$ or $|\downarrow \downarrow\rangle$. The experiment is repeated N times and the number of pairs of ions in the same state, $N_{\text {same }}$, is recorded.
(a) Explain what is meant by an entangled state and the implications for measurements performed on the system.
(b) Use the operator $\hat{N}_{\text {same }}=N[|\uparrow \uparrow\rangle\langle\uparrow \uparrow|+|\downarrow \downarrow\rangle\langle\downarrow \downarrow|]$ to calculate the value of $\left\langle N_{\text {same }}\right\rangle$.
(c) The experiment is repeated for pairs of ions in different entangled states and a quantity B is calculated from the resulting values of $N_{\text {same }}$. The observed value is $B_{\text {obs }}=2.25 \pm 0.03$.
i. Bell's inequality for this experiment is $B \leq 2$. Explain what is meant by this statement and why this inequality is violated in this experiment.
ii. Almost all ion pairs produced in this experiment can be measured. Why is this important for experimental tests of Bell's inequality?
[20]
iii. Suggest one reason why the observed value of B may be slightly lower than the value predicted using the value of $\left\langle N_{\text {same }}\right\rangle$.
5. (a) Derive an approximate expression for the critical tempera for the formation of a Bose-Einstein condensate, T_{c}, for a collection of N particles of mass m in a volume V. Explain your method clearly.
(b) A cloud of $500,000{ }^{23} \mathrm{Na}$ atoms is trapped in a region with a diameter of 0.02 mm .
i. Estimate the value of T_{c} for these atoms.
ii. Estimate the size of the cloud at temperatures just above and just below $T_{c} 0.01 \mathrm{~s}$ after the magneto-optical trap is turned off.
(c) Outline the operating principles of a magneto-optical trap. [40]

Pauli spin matrices

Operator	Eigenvalue	Eigenvector
$\hat{S}_{x}=\frac{\hbar}{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\frac{1}{2} \hbar$	$\alpha_{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$-\frac{1}{2} \hbar$	$\beta_{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$	
$\hat{S}_{y}=\frac{\hbar}{2}\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$	$\frac{1}{2} \hbar$	$\alpha_{y}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i\end{array}\right]$
$\hat{S}_{z}=\frac{\hbar}{2}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$	$-\frac{1}{2} \hbar$	$\beta_{y}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$
	$-\frac{1}{2} \hbar$	$\alpha_{z}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

