The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13
Level III

Thursday $2^{\text {nd }}$ May 2013, 09.30-11.30
PHYSICS/ASTROPHYSICS
PHY-30028
PHYSICS OF GALAXIES

Candidates should attempt to answer THREE questions.
A sheet of useful formulae can be found on the last page.

1. (a) Consider a system of main-sequence stars that have indivia masses M_{\star} between the limits $M_{\ell} \leq M_{\star} \leq M_{u}$, distributed according to $d N / d M_{\star}=A M_{\star}^{-\beta}$ with A and β constants.
i. Assuming the approximate mass-luminosity relation $L_{\star} \approx$ M_{\star}^{3} (in Solar units) for individual main-sequence stars, show that the total mass-to-light ratio of the stellar system is

$$
\begin{equation*}
\frac{M_{\mathrm{tot}}}{L_{\mathrm{tot}}} \approx \frac{4-\beta}{2-\beta} \frac{M_{u}^{2-\beta}-M_{\ell}^{2-\beta}}{M_{u}^{4-\beta}-M_{\ell}^{4-\beta}} \tag{20}
\end{equation*}
$$

ii. Estimate the mass-to-light ratio of an old stellar system with

$$
\begin{equation*}
\beta=1.2, M_{\ell}=0.08 M_{\odot} \text { and } M_{u}=0.9 M_{\odot} . \tag{5}
\end{equation*}
$$

(b) Write down the general equation for the acceleration $\ddot{\boldsymbol{x}}$ in a gravitational potential $\Phi(\boldsymbol{x})$. Use this to show that the speed on a circular orbit of radius R in a plane at fixed z in an axisymmetric galaxy is given by $V_{c}^{2}(R, z)=R(\partial \Phi / \partial R)$. [20]
(c) A power-law model for the potential of the Milky Way is

$$
\Phi(R, z)=-C\left(R^{2}+z^{2} / q^{2}\right)^{-n}
$$

where C, q and n are positive constants.
i. Show that the circular speed in the midplane $(z=0)$ of the Galaxy, in this model, is $V_{c}(R, 0)=\sqrt{2 n C} R^{-n}$.
ii. At radius R in an axisymmetric disc, the Oort constants are

$$
A \equiv-\frac{1}{2}\left[\frac{d V_{c}}{d R}-\frac{V_{c}}{R}\right] \quad \text { and } \quad B \equiv-\frac{1}{2}\left[\frac{d V_{c}}{d R}+\frac{V_{c}}{R}\right] .
$$

Near the Sun, observations give $A=14.8 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}$ and $B=-12.4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}$. Thus, calculate V_{c} at the position of the Sun, and infer the value of the exponent n in a powerlaw model for the Milky Way potential.
iii. Within this power-law model, calculate the circular speed at $R=50 \mathrm{kpc}$ in the plane of the Milky Way. Given that the total luminosity of the Galaxy is $L_{\text {tot }} \approx 2 \times 10^{10} L_{\odot}$, estimate the mass of dark matter contained within 50 kpc .
2. The Plummer model for a self-gravitating, spherical mass distr tion has the potential and density

$$
\Phi(r)=-\frac{G \mathcal{M}}{\left(r^{2}+a^{2}\right)^{1 / 2}} \quad \text { and } \quad \rho(r)=\frac{3 \mathcal{M}}{4 \pi} \frac{a^{2}}{\left(r^{2}+a^{2}\right)^{5 / 2}}
$$

where \mathcal{M} and a are constants.
(a) Write down the equation used to obtain $\rho(r)$ from $\Phi(r)$ (no calculation is required).
(b) Show that the mass contained within radius r in a Plummer sphere is

$$
\begin{equation*}
M(r)=\mathcal{M} \frac{r^{3}}{\left(r^{2}+a^{2}\right)^{3 / 2}} . \tag{15}
\end{equation*}
$$

(c) Show that the half-mass radius of a Plummer sphere is

$$
\begin{equation*}
r_{h} \simeq 1.3048 a \tag{15}
\end{equation*}
$$

(d) The total gravitational potential energy of a spherical mass distribution is given in general by

$$
W=\frac{1}{2} \int_{0}^{\infty} \Phi(r) \rho(r) 4 \pi r^{2} d r
$$

i. Explain this equation in physical terms.
ii. Show that, for the Plummer model,

$$
\begin{equation*}
W \simeq-0.3843 \frac{G \mathcal{M}^{2}}{r_{h}} \tag{25}
\end{equation*}
$$

(e) The globular star cluster ω Centauri has a V-band luminosity $L_{V}=1.3 \times 10^{6} L_{\odot}$; a half-mass radius $r_{h}=9.7 \mathrm{pc}$; and an average one-dimensional stellar velocity dispersion $\sigma=12 \mathrm{~km} \mathrm{~s}^{-1}$. The dwarf galaxy Sculptor has $L_{V}=2.3 \times 10^{6} L_{\odot}$ and $\sigma=$ $9.9 \mathrm{~km} \mathrm{~s}^{-1}$, similar to ω Centauri, but $r_{h}=380 \mathrm{pc}$.
Assuming that the stars in both ω Centauri and Sculptor are old, and that Plummer models describe the mass distributions of both systems, use the virial theorem to estimate the mass of dark matter in each.
3. (a) What is meant by the Eddington limit? Under what condit might the Eddington luminosity be exceeded?
(b) An accreting black hole of mass M has a luminosity L.
i. Write down equations for the forces acting on a protonelectron plasma at a radius of r from the black hole. [10]
ii. Thus, show that the luminosity ($L_{\text {Edd }}$) of an accreting black hole of mass M at the Eddington limit is given by

$$
L_{\mathrm{Edd}}=\frac{4 \pi G c M m_{\mathrm{p}}}{\sigma_{\mathrm{T}}}
$$

where σ_{T} is the Thomson cross section.
(c) Consider a particle of mass m in an accretion disc at a radius r from a black hole of mass M.
i. Write down an expression for the gravitational potential energy of the particle.
ii. Use the virial theorem to show that the total luminosity L emitted by a disc around the black hole is

$$
\begin{equation*}
L=\frac{G M \dot{M}}{2 r}, \tag{15}
\end{equation*}
$$

where \dot{M} is the accretion rate onto the black hole.
(d) The black hole in the quasar 3C 273 has a mass of $M=10^{9} \mathrm{M}_{\odot}$ and accretes at the Eddington limit.
i. Estimate the luminosity of 3C 273.
ii. Calculate the mass accretion rate of 3C 273 (in Solar units) if the accretion disc extends down to the innermost stable circular orbit (ISCO) of a Schwarzschild black hole.
iii. What is the corresponding efficiency factor of converting rest mass into energy in this case?
iv. How might the efficiency differ for a Kerr black hole?
4. (a) A virialised, three-dimensional distribution of clouds in the B Line Region (BLR) of an AGN has a line-of-sight velocity dispersion σ. If r is the radial distance of the clouds from the black hole in the AGN, show that the mass of the black hole is

$$
\begin{equation*}
M_{\mathrm{BH}}=\frac{3 \sigma^{2} r}{G} . \tag{15}
\end{equation*}
$$

(b) The broad $\mathrm{H} \beta$ line of the Seyfert galaxy, NGC 5548, is measured in a reverberation observation to determine its black hole mass.
i. The $\mathrm{H} \beta$ line in NGC 5548 has an emitted wavelength of 486.1 nm and has a Full Width Half Maximum of 8.10 nm . Calculate the velocity dispersion of the BLR clouds. [15]
ii. The variations in the $\mathrm{H} \beta$ line are delayed with respect to the AGN continuum. Explain why this delay occurs.
iii. If the time delay between the continuum and $\mathrm{H} \beta$ emission is 10 days, estimate the radius of the BLR and hence calculate the mass of the black hole in NGC 5548.
(c) Suppose that the stars around a black hole of mass M_{BH} have the density distribution $\rho_{\star}(r)=K r^{-2}$, with K a constant.
i. Solve the spherical Jeans equation to show that the onedimensional velocity dispersion of the stars at radius r from the black hole is given by

$$
\begin{equation*}
\sigma_{\star}^{2}(r)=2 \pi G K+\frac{1}{3} \frac{G M_{\mathrm{BH}}}{r} . \tag{25}
\end{equation*}
$$

ii. Taking $K=1.5 \times 10^{5} M_{\odot} \mathrm{pc}^{-1}$ for stars near the centre of NGC 5548, and using the value of M_{BH} from part (b), calculate the radius $r_{\text {eq }}$ at which the contribution of the black hole to σ_{\star} equals the contribution of the stars themselves. Evaluate σ_{\star} at some appropriate radii in order to make a sketch of σ_{\star} versus r with scales on both axes.
5. The hot diffuse plasma in a galaxy cluster can emit X-ray radia via Bremsstrahlung, whereby the total luminosity L is given by

$$
L=1.4 \times 10^{-40} Z^{2} T^{0.5} \int n_{e}^{2} d V
$$

where Z is the average atomic number of the gas, T is its temperature and n_{e} is the electron density. The integral $\int n_{e}^{2} d V$ is referred to as the emission measure of the plasma.
(a) i. State how Bremsstrahlung radiation is emitted. Why is the emission measure proportional to n_{e}^{2} ?
ii. Explain how the luminosity of the X-ray Bremsstrahlung radiation might be affected by cluster mass.
(b) The electron density of a cluster varies with radius r as a powerlaw of the form $n_{e}(r)=n_{c}\left(r / r_{c}\right)^{-\alpha}$, where n_{c} is the core density and r_{c} is the core radius of the cluster.

Show that the emission measure of the cluster is equal to

$$
\begin{equation*}
\int_{0}^{R} n_{e}^{2} d V=\frac{4 \pi n_{c}^{2} r_{c}^{2 \alpha}}{(3-2 \alpha)} R^{(3-2 \alpha)} \tag{15}
\end{equation*}
$$

(c) The Coma cluster has a core radius of $r_{c}=200 \mathrm{kpc}, k T=8 \mathrm{keV}$ and an X-ray luminosity of $L=10^{38} \mathrm{~W}$, while $\alpha=1.3$.
i. Evaluate the emission measure of the cluster out to a radius of $R=2 \mathrm{Mpc}$ and hence determine the core electron density (assume the gas is composed of hydrogen).
ii. Calculate the total mass of X-ray emitting gas in the cluster inside a radius of 2 Mpc .
(d) If the total B-band luminosity of the cluster is $L_{B}=5 \times 10^{12} L_{\odot}$, estimate what fraction of the total baryonic mass consists of hot X-ray emitting gas.

Some useful formulae

In spherical polar coordinates,

$$
\begin{gathered}
\ddot{\boldsymbol{x}}=\widehat{\boldsymbol{r}}\left(\ddot{r}-r \dot{\theta}^{2}-r \sin ^{2} \theta \dot{\phi}^{2}\right)+\widehat{\boldsymbol{\theta}}\left(r \ddot{\theta}+2 \dot{r} \dot{\theta}-r \sin \theta \cos \theta \dot{\phi}^{2}\right) \\
+\widehat{\boldsymbol{\phi}}(r \sin \theta \ddot{\phi}+2 \sin \phi \dot{r} \dot{\phi}+2 r \cos \theta \dot{\theta} \dot{\phi})
\end{gathered}
$$

$\nabla \Phi=\widehat{\boldsymbol{r}} \frac{\partial \Phi}{\partial r}+\widehat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial \Phi}{\partial \theta}+\widehat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial \Phi}{\partial \phi}$

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Phi}{\partial \phi^{2}}
$$

In cylindrical polar coordinates,

$$
\begin{aligned}
\ddot{\boldsymbol{x}} & =\widehat{\boldsymbol{R}}\left(\ddot{R}-R \dot{\theta}^{2}\right)+\widehat{\boldsymbol{\theta}}(R \ddot{\theta}+2 \dot{R} \dot{\theta})+\widehat{\boldsymbol{z}} \ddot{z} \\
\nabla \Phi & =\widehat{\boldsymbol{R}} \frac{\partial \Phi}{\partial R}+\widehat{\boldsymbol{\theta}} \frac{1}{R} \frac{\partial \Phi}{\partial \theta}+\widehat{\boldsymbol{z}} \frac{\partial \Phi}{\partial z} \\
\nabla^{2} \Phi & =\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial \Phi}{\partial R}\right)+\frac{1}{R^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}
\end{aligned}
$$

Spherical Jeans equation:

$$
\frac{d}{d r}\left(\rho \sigma^{2}\right)=-\rho(r) \frac{G M(r)}{r^{2}}
$$

Standard integrals: $\quad \int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{3}} d x=\frac{\pi}{16}$

$$
\int \frac{x^{2}}{\left(1+x^{2}\right)^{5 / 2}} d x=\frac{1}{3} \frac{x^{3}}{\left(1+x^{2}\right)^{3 / 2}}
$$

