The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13
Level III

Tuesday $30^{\text {th }}$ April 2013, 09.30-11.30

PHYSICS/ASTROPHYSICS
PHY-30025

LIFE IN THE UNIVERSE

Candidates should attempt to answer THREE questions.

1. Consider the formation of the amino-acid glycine $\left(\mathrm{O}=\mathrm{CHCH}_{2} \mathrm{~N}\right.$ within an ice particle in space, from the subsequent reactions of formaldehyde $\left(\mathrm{O}=\mathrm{CH}_{2}\right)$ with methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ and ammonia $\left(\mathrm{NH}_{3}\right)$. Some of the relevant bond energies are tabulated here:

bond	$\mathrm{H}-\mathrm{H}$	$\mathrm{C}-\mathrm{H}$	$\mathrm{N}-\mathrm{H}$	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{N}$
bond energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	436	414	389	347	305

(a) Sketch, and describe in more detail, how the above reactions proceed.
(b) Calculate the net energy of the chain of reactions.
(c) Give two reasons for why the formation of glycine is unlikely to happen spontaneously.
(d) Calculate the wavelength of a photon that could help initiate the reactions; comment on your answer.
(e) Calculate the gas temperature required for electrons to have sufficient energy to help initiate the reactions; comment on your answer.
(f) Discuss the relevance of the above discussions for the emergence of life on Earth.
2. The figure below shows radial velocity (RV) measurements of a of mass $M_{\star}=1.2 \mathrm{M}_{\odot}$ and radius $R_{\star}=1.6 \mathrm{R}_{\odot}$ during a planet transit; the line is a model, and the lower panel shows the difference between the observed (O) and calculated (C) velocity.

(a) Explain the observed radial velocity variations.
(b) If the period of the full radial velocity modulation is 20 days, determine the distance between the planet and the star.
(c) If the radial velocity of the star varies between $-80 \mathrm{~m} \mathrm{~s}^{-1}$ and $+80 \mathrm{~m} \mathrm{~s}^{-1}$, determine the mass of the planet.
(d) Estimate the radius of the planet; account for inclination.
(e) Describe how additional observations can help to improve the determinations of the planet mass and radius.
3. (a) Calculate the equilibrium temperature of the Earth, assum an albedo of 0.3 and an emission efficiency of 0.6.
(b) The Earth's atmosphere has a total mass $M=5 \times 10^{18} \mathrm{~kg}$ and a specific heat capacity of $c_{P}=1 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. Estimate how long it takes for the Earth's atmosphere to cool by 1 K. [20]
(c) Consider the thermal diffusion equation

$$
\frac{d q}{d t}=-k \frac{d T}{d x}
$$

where $d q / d t$ is the rate of heat flow per unit area, k is the thermal conductivity and $d T / d x$ is the temperature gradient. The thermal diffusivity

$$
\alpha=\frac{k}{\rho c_{P}}
$$

where ρ is the density and c_{P} is the specific heat capacity.
i. Show that the velocity at which the temperature gradient is annihilated

$$
\begin{equation*}
\frac{d x}{d t}=\frac{\alpha}{L} \tag{20}
\end{equation*}
$$

where L is a length scale.
ii. In Earth's atmosphere, $\alpha=1.9 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and the mean free path $\delta=68 \mathrm{~nm}$. Hence argue that $d x / d t<\alpha / \delta$.
(d) Assuming a balance between the thermal pressure gradient and the ram pressure, estimate the typical (maximum) wind speed one may expect.
(e) Considering the equatorial rotation speed at Earth's surface, comment on the ability of diffusion and wind to reduce daynight temperature variations.
4. (a) Explain how the Earth's surface is protected against harn radiation from the Sun.
(b) Explain why the cosmic ray flux at Earth's surface is at its maximum when the Sun is least active.
(c) Explain how Earth's exposure to harmful radiation and cosmic rays has changed since the formation of the Solar System. [20]
(d) Consider the vertical motion of the Solar System in and out of the Milky Way disc mid-plane, described by

$$
\frac{d^{2} z}{d t^{2}}=-\frac{d \Phi}{d z}
$$

where Φ is the gravitational potential - which can be found from the Poisson equation

$$
\frac{d^{2} \Phi}{d z^{2}}=4 \pi G \rho(z)
$$

where ρ is the density.
i. By Taylor expansion of Φ, show that the equation of motion takes the form

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}=-\omega^{2} z \tag{20}
\end{equation*}
$$

ii. For $\rho \sim 1 \mathrm{M}_{\odot} \mathrm{pc}^{-3}$, calculate the period of motion and comment on the possible significance for life on Earth.
5. Consider building a spacecraft which is driven by means of a s sail made of reflecting foil of surface mass density $\Sigma=1 \mathrm{~g} \mathrm{~m}^{-2}$.
(a) Show that the acceleration is independent of the surface area of the sail as long as the sail dominates the total mass.
(b) The spacecraft starts at rest at 1 au distance from the Sun. It then falls towards the Sun, passing it at a distance of 10 solar radii at which time the sail unfolds. Use energy arguments to show that it would take <13000 yr to travel to a star at a distance of 10 light years.
(c) Assume in the following that once every million yr, each colony will send an identical spacecraft on a voyage to another star at a distance of 10 light years.
i. Set up a differential equation which describes the growth of the number of colonies with time, $N(t)$, and hence derive the following expression:

$$
\begin{equation*}
N(t)=N_{0} \exp (\alpha t) \tag{10}
\end{equation*}
$$

ii. Hence determine the number of colonies after $t=10$ million and $t=100$ million yr.
iii. Considering the Milky Way is pretty much a flat disc, with a diameter of 100000 light years, estimate the time it takes for the colonization of the entire Milky Way.
iv. If only 10% of voyages are successful, 10% of settlements are successful, and 10% of colonies continue colonization, estimate the number of colonies after $t=1$ billion yr. [10]

