The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13

Level II

Thursday $17^{\rm th}$ January 2013, $16{:}00\,{-}\,18{:}00$

PHYSICS/ASTROPHYSICS

PHY-20006

QUANTUM MECHANICS

Candidates should attempt ALL of PART A and TWO questions from PART B.

PART A yields 40% of the marks, PART B yields 60%.

A sheet of useful formulae can be found on page 9.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

Answer all TEN questions PART A

- StudentBounts.com A1 Give an expression for the probability of observing a particle in a thin shell of radius r and infinitesimal width dr for a particle with a spherically symmetric wave function $\Psi(r, t)$. [4]
- A2Sketch the following function and give *two* reasons why it cannot be part of a realistic wave function (a > 0 is a real constant).

$$f(x) = \begin{cases} e^{ax} & x < 0\\ ax & x \ge 0 \end{cases}$$

Calculate the value of A for the following wave function and explain A3 your method.

$$\Psi(x,t) = A \operatorname{sech}(x) e^{-i\omega t}$$

You may use the following integral without proof in your answer.

$$\int \operatorname{sech}^2(x) \, dx = \tanh(x) + C$$

$$\to \pm 1 \text{ for } x \to \pm \infty.$$
[4]

N.B. $tanh(x) \to \pm 1$ for $x \to \pm \infty$.

/Cont'd

[4]

A4 State *three* differences between the predictions of classical phyand the predictions of quantum mechanics for the properties of a particle in the semi-infinite square well potential,

$$V(x) = \begin{cases} \infty & x < 0\\ -V_0 & 0 \le x \le a\\ 0 & x > a \end{cases}$$

A5 Sketch the energy eigenfunctions for the ground state and first excited state of a particle trapped in the region 0 < x < a by the potential shown below assuming that the energy of the particle is $E < V_B$ in both cases.

A6 Calculate the expectation value $\langle E \rangle$ for the energy of a particle with the wavefunction

$$\Psi(x,t) = \frac{1}{\sqrt{2}}\psi_1(x)e^{-iE_1t/\hbar} - \frac{1}{\sqrt{2}}\psi_2(x)e^{-iE_2t/\hbar},$$

where $E_n = \sqrt{n} \, \text{eV}$ is the energy for the state ψ_n .

/Cont'd

www.StudentBounty.com

[4]

[4]

[4]

- A7 Show that the wave function $\Psi(x,t) = e^{-i(kx+wt)}$ is an eigenfunct of the momentum operator, \hat{p} , and state the eigenvalue. [4]
- A8 The wave function for 2 identical particles in a 1-dimensional potential is $\Psi(x_1, x_2)$. State and explain the possible values of $\Psi(x_2, x_1)$. [4]
- A9 List all possible values for the magnitude of the total angular momentum, J, for an electron in the 2p state of the hydrogen atom. Give your answers in units of \hbar . [4]
- A10 A particle has the wave function

$$\Psi(x,t) = \frac{a^{\frac{3}{2}}}{\sqrt{2}} x e^{-ax/2} e^{-i\omega t}, \qquad x > 0.$$

Calculate an approximate correction to the energy of the particle if the potential is perturbed by a field $V'(x) = \epsilon x$, where $\epsilon = 0.02 \text{ eV/nm}$ and $a = 1 \text{ nm}^{-1}$. You may use the following integral without proof in your answer.

$$\int_0^\infty r^n e^{-ar} dr = \frac{n!}{a^{n+1}}$$
[4]

/Cont'd

PART B Answer TWO out of FOUR questions

StudentBounty.com B1 A particle of mass m is trapped in the following potential:

For some values of k it is possible to write the solution of the time independent Schrödinger equation as

$$\psi(x) = \begin{cases} \psi_A = Ae^{-\alpha x^2} & x < 0\\ \psi_B = B\cos(\beta x) + C\sin(\beta x) & 0 \le x \le a\\ 0 & x > a \end{cases}$$

- (a) Apply the appropriate boundary condition at x = 0, and hence show that B = A and C = 0. [6]
- (b) Apply the appropriate boundary condition at x = a and hence derive the possible values of β . |5|
- (c) Show that ψ_B is a solution of the time independent Schrödinger equation, and hence derive an expression for the energy, E, in terms of a. [8]
- (d) Discuss the behaviour of $\frac{\partial \psi}{\partial x}$ at x = a[5]
- (e) Describe and explain what the solutions of the time independent Schrödinger equation would look like in the alternative case $k \to \infty$. [6]

/Cont'd

StudentBounty.com B2The energy of a particle with mass m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensional harmonic matrix m is a 2-dimensional harmonic matrix m in a 2-dimensiona oscillator potential

$$V(x,y) = \frac{1}{2}m\omega^2(x^2 + y^2) = \frac{1}{2}kr^2$$

is given by

$$E_{n_x,n_y} = (n_x + n_y + 1)\hbar\omega$$
 $n_x = 0, 1, 2, \dots$
 $n_y = 0, 1, 2, \dots$

The angular momentum operator for a 2-dimensional system is

$$\hat{L}_2 = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x$$

where $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$, and similarly for \hat{p}_y .

- (a) Write down the energy in units of $\hbar\omega$ for the first three energy levels. State the degeneracy and the values of n_x and n_y for each energy level. |6|
- (b) Show that Y(x,y) = y ix is an eigenfunction of the operator L_2 . State the values of the expectation value $\langle L_2 \rangle$ and the uncertainty ΔL_2 for the particle in this state. 8
- (c) Show that the commutator for \hat{L}_2 and \hat{x} has the value $[\hat{L}_2, \hat{x}] =$ $i\hbar y$. State briefly what your result implies for the observed values of L_2 and x. [10]
- (d) Give a physical reason why eigenfunctions of the L_2 operator can be used to find a solution to the time independent Schrödinger equation for this potential. |6|

/Cont'd

StudentBounts.com B3 The energy of a particle with mass m in the harmonic oscilla potential $V(x) = \frac{1}{2}kx^2$ is given by

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \qquad n = 0, 1, 2, \dots,$$

where $\omega = \sqrt{k/m}$. The energy eigenfunction for the first excited state is

$$\psi_1(x) = A_1\left(\frac{x}{a}\right)e^{-x^2/2a^2},$$

where a is a constant.

- (a) Show that ψ_1 has definite parity and state its value. [4]
- (b) Sketch the position probability distribution function for the state ψ_1 . |4|
- (c) The spectrum of H³⁵Cl shows spectral features due to changes in vibration state spaced equally in frequency by 8.66×10^{13} Hz. Calculate the bond strength, k, for this molecule. State any assumptions you have made in your calculation. 8
- (d) Describe how the energy eigenfunctions ψ_j , j = 0, 1, 2..., for this potential can be used to represent a time-dependent wave function $\Psi(x,t)$ given an initial state $\Psi(x,0)$. [8]
- (e) Discuss briefly whether the following two statements are consistent with each other.
 - The momentum, p, of a particle with kinetic energy E_1 is given by $p^2 = 2mE_1$.
 - The expectation value of the momentum for the particle described by $\psi_1(x)$ is $\langle p \rangle = 0$.

[6]

/Cont'd

StudentBounty.com B4The wave functions for an electron in a simple model of the hydro. atom have the form

$$\Psi_{n,\ell,m_{\ell}}(r,\theta,\phi,t) = \frac{u(r)}{r} Y_{\ell,m_{\ell}}(\theta,\phi) e^{-iEt/\hbar}.$$

- (a) State the physical quantity most closely associated with each of the quantum numbers n, ℓ and m_{ℓ} , and state the possible values for each quantum number for an electron in a 3p state. |6|
- (b) The function u(r) is a solution of the radial Schrödinger equation for the effective potential

$$V_e(r) = \frac{\ell(\ell+1)\hbar^2}{2m_e r^2} - \frac{e^2}{4\pi\epsilon_0 r}.$$

Explain the origin of the two terms in this equation for the effective potential. |4|

- (c) With the aid of a labelled diagram, describe the main features and results of the Stern-Gerlach experiment. Explain how this experiment shows that the eigenfunctions $\Psi_{n,\ell,m_{\ell}}$ do not give a complete description for the properties of an electron in a hydrogen atom. |12|
- (d) The 3p state of hydrogen is split into two energy levels split by about 0.05 meV. Explain the origin of this *fine structure* in the energy spectrum of hydrogen. 8

/Cont'd

Quantum Mechanics formulae

Time independent Schrödinger equation

$$\hat{H}\psi = \left[-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\right]\psi = E\psi$$