The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13

Level II

Thursday $17^{\text {th }}$ January 2013, 16:00-18:00
 PHYSICS/ASTROPHYSICS

PHY-20006

QUANTUM MECHANICS

Candidates should attempt ALL of PART A and TWO questions from PART B.

PART A yields 40% of the marks, PART B yields 60%.

A sheet of useful formulae can be found on page 9.

PART A Answer all TEN questions

A1 Give an expression for the probability of observing a particle in a thin shell of radius r and infinitesimal width $d r$ for a particle with a spherically symmetric wave function $\Psi(r, t)$.

A2 Sketch the following function and give two reasons why it cannot be part of a realistic wave function ($a>0$ is a real constant).

$$
f(x)=\left\{\begin{array}{cc}
e^{a x} & x<0 \\
a x & x \geq 0
\end{array}\right.
$$

A3 Calculate the value of A for the following wave function and explain your method.

$$
\Psi(x, t)=A \operatorname{sech}(x) e^{-i \omega t}
$$

You may use the following integral without proof in your answer.

$$
\int \operatorname{sech}^{2}(x) d x=\tanh (x)+C
$$

N.B. $\tanh (x) \rightarrow \pm 1$ for $x \rightarrow \pm \infty$.

A4 State three differences between the predictions of classical phy and the predictions of quantum mechanics for the properties of a particle in the semi-infinite square well potential,

$$
V(x)= \begin{cases}\infty & x<0 \\ -V_{0} & 0 \leq x \leq a \\ 0 & x>a\end{cases}
$$

A5 Sketch the energy eigenfunctions for the ground state and first excited state of a particle trapped in the region $0<x<a$ by the potential shown below assuming that the energy of the particle is $E<V_{B}$ in both cases.

A6 Calculate the expectation value $\langle E\rangle$ for the energy of a particle with the wavefunction

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2}} \psi_{1}(x) e^{-i E_{1} t / \hbar}-\frac{1}{\sqrt{2}} \psi_{2}(x) e^{-i E_{2} t / \hbar}, \tag{4}
\end{equation*}
$$

where $E_{n}=\sqrt{n} \mathrm{eV}$ is the energy for the state ψ_{n}.

A7 Show that the wave function $\Psi(x, t)=e^{-i(k x+w t)}$ is an eigenfunct of the momentum operator, \hat{p}, and state the eigenvalue.

A8 The wave function for 2 identical particles in a 1-dimensional potential is $\Psi\left(x_{1}, x_{2}\right)$. State and explain the possible values of $\Psi\left(x_{2}, x_{1}\right)$.

A9 List all possible values for the magnitude of the total angular momentum, J, for an electron in the 2 p state of the hydrogen atom. Give your answers in units of \hbar.

A10 A particle has the wave function

$$
\Psi(x, t)=\frac{a^{\frac{3}{2}}}{\sqrt{2}} x e^{-a x / 2} e^{-i \omega t}, \quad x>0 .
$$

Calculate an approximate correction to the energy of the particle if the potential is perturbed by a field $V^{\prime}(x)=\epsilon x$, where $\epsilon=0.02 \mathrm{eV} / \mathrm{nm}$ and $a=1 \mathrm{~nm}^{-1}$. You may use the following integral without proof in your answer.

$$
\int_{0}^{\infty} r^{n} e^{-a r} d r=\frac{n!}{a^{n+1}}
$$

PART B Answer TWO out of FOUR questions

B1 A particle of mass m is trapped in the following potential:

$$
V(x)=\left\{\begin{array}{lc}
\frac{1}{2} k x^{2} & x<0 \\
0 & 0 \leq x \leq a \\
\infty & x>a
\end{array}\right.
$$

For some values of k it is possible to write the solution of the time independent Schrödinger equation as

$$
\psi(x)=\left\{\begin{array}{lc}
\psi_{A}=A e^{-\alpha x^{2}} & x<0 \\
\psi_{B}=B \cos (\beta x)+C \sin (\beta x) & 0 \leq x \leq a \\
0 & x>a
\end{array}\right.
$$

(a) Apply the appropriate boundary condition at $x=0$, and hence show that $B=A$ and $C=0$.
(b) Apply the appropriate boundary condition at $x=a$ and hence derive the possible values of β.
(c) Show that ψ_{B} is a solution of the time independent Schrödinger equation, and hence derive an expression for the energy, E, in terms of a.
(d) Discuss the behaviour of $\frac{\partial \psi}{\partial x}$ at $x=a$
(e) Describe and explain what the solutions of the time independent Schrödinger equation would look like in the alternative case $k \rightarrow \infty$.

B2 The energy of a particle with mass m in a 2-dimensional harm oscillator potential

$$
V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)=\frac{1}{2} k r^{2}
$$

is given by

$$
\begin{array}{ll}
E_{n_{x}, n_{y}}=\left(n_{x}+n_{y}+1\right) \hbar \omega & n_{x}=0,1,2, \ldots \\
& n_{y}=0,1,2, \ldots
\end{array}
$$

The angular momentum operator for a 2 -dimensional system is

$$
\hat{L_{2}}=\hat{x} \hat{p_{y}}-\hat{y} \hat{p_{x}},
$$

where $\hat{p_{x}}=-i \hbar \frac{\partial}{\partial x}$, and similarly for $\hat{p_{y}}$.
(a) Write down the energy in units of $\hbar \omega$ for the first three energy levels. State the degeneracy and the values of n_{x} and n_{y} for each energy level.
(b) Show that $Y(x, y)=y-i x$ is an eigenfunction of the operator $\hat{L_{2}}$. State the values of the expectation value $\left\langle L_{2}\right\rangle$ and the uncertainty ΔL_{2} for the particle in this state.
(c) Show that the commutator for \hat{L}_{2} and \hat{x} has the value $\left[\hat{L_{2}}, \hat{x}\right]=$ $i \hbar y$. State briefly what your result implies for the observed values of L_{2} and x.
(d) Give a physical reason why eigenfunctions of the L_{2} operator can be used to find a solution to the time independent Schrödinger equation for this potential.

B3 The energy of a particle with mass m in the harmonic oscilla potential $V(x)=\frac{1}{2} k x^{2}$ is given by

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad n=0,1,2, \ldots,
$$

where $\omega=\sqrt{k / m}$. The energy eigenfunction for the first excited state is

$$
\psi_{1}(x)=A_{1}\left(\frac{x}{a}\right) e^{-x^{2} / 2 a^{2}},
$$

where a is a constant.
(a) Show that ψ_{1} has definite parity and state its value.
(b) Sketch the position probability distribution function for the state ψ_{1}.
(c) The spectrum of $\mathrm{H}^{35} \mathrm{Cl}$ shows spectral features due to changes in vibration state spaced equally in frequency by $8.66 \times 10^{13} \mathrm{~Hz}$. Calculate the bond strength, k, for this molecule. State any assumptions you have made in your calculation.
(d) Describe how the energy eigenfunctions $\psi_{j}, j=0,1,2 \ldots$, for this potential can be used to represent a time-dependent wave function $\Psi(x, t)$ given an initial state $\Psi(x, 0)$.
(e) Discuss briefly whether the following two statements are consistent with each other.

- The momentum, p, of a particle with kinetic energy E_{1} is given by $p^{2}=2 m E_{1}$.
- The expectation value of the momentum for the particle described by $\psi_{1}(x)$ is $\langle p\rangle=0$.

B4 The wave functions for an electron in a simple model of the hydro atom have the form

$$
\Psi_{n, \ell, m_{\ell}}(r, \theta, \phi, t)=\frac{u(r)}{r} Y_{\ell, m_{\ell}}(\theta, \phi) e^{-i E t / \hbar} .
$$

(a) State the physical quantity most closely associated with each of the quantum numbers n, ℓ and m_{ℓ}, and state the possible values for each quantum number for an electron in a 3 p state.
(b) The function $u(r)$ is a solution of the radial Schrödinger equation for the effective potential

$$
V_{e}(r)=\frac{\ell(\ell+1) \hbar^{2}}{2 m_{e} r^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0} r} .
$$

Explain the origin of the two terms in this equation for the effective potential.
(c) With the aid of a labelled diagram, describe the main features and results of the Stern-Gerlach experiment. Explain how this experiment shows that the eigenfunctions $\Psi_{n, \ell, m_{\ell}}$ do not give a complete description for the properties of an electron in a hydrogen atom.
(d) The 3p state of hydrogen is split into two energy levels split by about 0.05 meV . Explain the origin of this fine structure in the energy spectrum of hydrogen.

Quantum Mechanics formulae

Time independent Schrödinger equation

$$
\hat{H} \psi=\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x)\right] \psi=E \psi
$$

