The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13
Level I

Thursday $17^{\text {th }}$ January 2013, 16.00-18.00
PHYSICS/ASTROPHYSICS
PHY-10024

NATURE OF MATTER

Candidates should attempt ALL of PART A and TWO questions from PART B.

PART A yields 40% of the marks, PART B yields 60%.

PART A Answer all TEN questions

A1 How many $\mathrm{H}_{2} \mathrm{O}$ molecules are there in a 0.5 -litre water bottle? [4]

A2 Helium gas, initially at atmospheric pressure ($P=1.01 \times 10^{5} \mathrm{~Pa}$), is compressed adiabatically to one quarter of its initial volume. Determine the pressure after the compression.

A3 The van der Waals equation of state is

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T .
$$

Sketch the phase diagram (i.e. P against V) for a 'real' (as opposed to 'ideal') gas that obeys the van der Waals equation of state; your sketch should include a $P-V$ curve for temperatures well below, and well above, the critical temperature T_{c}.

A4 A gas at pressure P is contained in a cylindrical vessel. The gas does work on a friction-free piston by raising it by a small distance $d x$. Show that the work done by the gas is $d W=P d V$, where $d V$ is the change in gas volume.

A5 The potential energy, $P E$, of a particle due to the van der Waals bond (referred to as the Lennard-Jones potential) is described by the formula:

$$
P E=-\frac{A}{r^{6}}+\frac{B}{r^{12}},
$$

where A and B are constants and r is the distance between the particles. Sketch the variation of $P E$ with r; include on your diagram the variation of each of the terms contributing to the total potential energy; indicate on your diagram the equilibrium separation between particles.

A6 X-rays of wavelength 0.158 nm are reflected from a cubic CsCl ce tal; the first order reflection occurs at 15.7°. What value does this give for the inter-planar spacing of CsCl ?

A7 Photons of wavelength 590 nm are emitted by a 50 W sodium lamp. How many photons are emitted per second?

A8 It is desired to study an object, of dimensions $10^{-14} \mathrm{~m}$, in a neutron diffraction experiment. What is the minimum velocity that neutrons must have in this experiment?

A9 A certain element having atomic number Z is bombarded with high energy electrons and monochromatic X-rays having wavelength of 0.21 nm are emitted. Identify the element. [Use Moseley's law: $\lambda=$ $\frac{4}{3 R} \frac{1}{(Z-1)^{2}}$ where $R=1.09737 \times 10^{7} \mathrm{~m}^{-1}$.]

A10 The mass of a ${ }^{1} \mathrm{H}$ atom is 1.007825 atomic mass units (amu), the mass of a neutron is 1.008665 amu , while the mass of a ${ }^{22} \mathrm{Ne}$ atom is 21.991383 amu . If $1 \mathrm{amu}=1.6604 \times 10^{-27} \mathrm{~kg}$, calculate the binding energy of a ${ }^{22} \mathrm{Ne}$ atom in MeV .

PART B Answer TWO out of FOUR questions

B1 (a) In the context of kinetic theory, what is a degree of freedom? [2]
(b) State the theorem of Equipartition of Energy.
(c) Show that, for a simple 3-dimensional crystalline solid, the Equipartition Theorem gives the result $C_{\mathrm{v}}=3 R$ for the molar specific heat.
(d) Sketch the temperature-dependence of the specific heat at constant volume, C_{v}, for a solid. Explain the basic features of the plot.
(e) The specific heat at constant volume of an unknown solid is measured at high temperature to be $319.5 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. Estimate its molecular weight.
(f) If the solid in part (c) were 2-dimensional rather than 3 -dimensional, what would the specific heat be?
(a) Describe briefly what is meant by (i) an ionic bond, (ii) a co lent bond, (iii) a van der Waals bond, (iv) co-ordination number.
(b) For ionic crystals, the total potential energy per ion may be expressed as

$$
P E=-\alpha \frac{e^{2}}{4 \pi \epsilon_{0} r}+\frac{B}{r^{12}},
$$

where α and B are constants.
i. Explain briefly the origin of the two terms on the right handside.
ii. There is a minimum in the potential energy at the intermolecule spacing r_{0}. Derive an expression for B in terms of r_{0}.
(c) Which of the bonds listed in part (a) are important in liquid nitrogen, which consists of nitrogen molecules N_{2} ?
(d) The latent heat of vaporisation of liquid nitrogen is $201 \mathrm{~kJ} \mathrm{~kg}^{-1}$. Estimate the strength of the bond in liquid nitrogen, and hence deduce the nature of the bond in terms of the above three alternatives.

B3 (a) State the three postulates of Bohr's model of the H atom.
(b) Bohr's model can explain Rydberg's formula for the wavelength of hydrogen spectral lines:

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

where $R=1.09737 \times 10^{7} \mathrm{~m}^{-1}$. What do n_{1} and n_{2} represent in Bohr's model?
(c) A laser uses the transition from $n_{2}=2$ to $n_{1}=1$ to produce its light. What is the wavelength of the light?
(d) Outline Einstein's theory of the photo-electric effect.
(e) Can the laser described in part (c) be used in a photo-electric experiment with a metal, whose work function is 5.0 eV ? Explain your answer.
(f) If the laser is suitable, what is the maximum kinetic energy of the electrons ejected? If not, what is the maximum wavelength that will produce the photo-electric effect?

B4 (a) What condition on the masses must be fulfilled for a parent cleus X to undergo an α-decay and produce a daughter nucleus Y ?
(b) The number of parent nuclei at time t is given by

$$
N=N_{0} e^{-\lambda t},
$$

where N_{0} is the initial number of parent nuclei and λ is the decay constant. The time required for the number of parent nuclei to drop to 50% of the initial number is called the halflife, $t_{1 / 2}$. Show that the half-life and decay constant are related by the following equation:

$$
\lambda=\frac{\ln 2}{t_{1 / 2}} .
$$

(c) The half-life for the α-decays of ${ }_{92}^{238} \mathrm{U}$ and ${ }_{88}^{226} \mathrm{Ra}$ are $4.5 \times$ 10^{9} years and 1.62×10^{3} years, respectively. If there are 10^{9} atoms of each ${ }_{92}^{238} \mathrm{U}$ and ${ }_{88}^{226} \mathrm{Ra}$ initially, how many atoms of each isotope are left after 1000 years?
(d) What are the daughter nuclei produced in these decays? [2×2]
(e) Discuss a potential application of these decays and its limitations?

