Please write your 8-digit student number here:

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2012/13
Level I

$$
\begin{gathered}
\text { Monday } 14^{\text {th }} \text { January 2013, 09:30-11:30 } \\
\text { PHYSICS/ASTROPHYSICS }
\end{gathered}
$$

MECHANICS, GRAVITY and RELATIVITY

Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered on the exam paper; PART C should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag. PART A yields 16% of the marks, PART B yields 24%, PART C yields 60%.

Please do not write in the box below

A		C1		
B		C2		
		C3		
		C4		

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PART A Tick one box by the answer you judge to be

A1 The units of energy are equivalent to:
$\square \mathrm{m}^{2} \mathrm{~s}^{-2}$
$\square \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
$\square \mathrm{kg} \mathrm{m} \mathrm{s}$
$\square \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}$

A2 Work is calculated from:
$\square d E / d t$
$\square \int F d t$
$\square P d m$
$\square \int F d x$

A3 A flywheel undergoes 5 revolutions per second. Its angular velocity is (in $\mathrm{rad} \mathrm{s}^{-1}$):
$\square 5 \pi$
$\square 2.5 \pi$
$\square 31.4$
$\square 3.14$
[1]

A4 A canal boat is pulled by a horse; the tension in the rope is 800 N and the rope makes an angle of 20° to the direction of travel. To keep the boat straight, the rudder must exert a lateral force of:
$\square 752 \mathrm{~N}$
$\square 153 \mathrm{~N}$
$\square 851 \mathrm{~N}$
$\square 274 \mathrm{~N}$

A5 A particle moving with distance $x=2 t^{2}$ has a velocity of:
$\square 8 t$

$\square 4 t$
$\square 4$
A6 The dot product of the vectors \boldsymbol{a} and \boldsymbol{b} is equivalent to:
$\square a b \cos \theta$
$\square a \wedge b$
$\square a b \sin \theta \hat{\boldsymbol{n}} \quad \square \sqrt{a^{2}+b^{2}}$

A7 A 1-kg hammer strikes a $10-\mathrm{g}$ nail exerting a force of 80 N . The nail exerts a force on the hammer of:
$\square 0.8 \mathrm{~N}$
$\square 8 \mathrm{~N}$
$\square 80 \mathrm{~N}$
A8 The angular momentum vector points:
$\square 100 \mathrm{~N}$
[1]
\square along the axis of rotation
\square perpendicular to the torque
\square in the plane of the body
\square in the direction of θ

A9 If the angle turned by a wheel is described by $\theta=30 t$ velocity is:
\square increasing $\quad \square$ decreasing $\quad \square$ zero
A10 Angular momentum is given by:
$\square r m^{2}$
$\square I \omega$
$\square \int r^{2} d m$
$\square d \tau / d \theta$

A11 Which of the following quantities is not necessarily conserved?:
\square energy
\square momentum
\square angular momentum
\square force
A12 The expression for gravitational potential energy $m g h$ is valid:
\square always $\quad \square$ for small $m \quad \square$ for small $h \quad \square$ never
A13 Kepler's laws state that planetary orbits:
\square are always circular
\square have a fixed speed
\square don't depend on mass
\square are elliptical
A14 Special Relativity applies only to:
\square heavy bodies \square uniform relative motions
\square accelerating bodies
\square velocities near c
A15 Which of the following has the greatest mass?
\square An infra-red photon
\square An optical photon
\square A UV photon
\square An X-ray photon
A16 A light beam travels at c as seen by one observer. As seen by a rocket, travelling at $0.5 c$ with respect to the first observer, the light beam appears to travel at:
$\square 0.5 \mathrm{c}$
$\square c / \sqrt{0.75}$
$\square c /(1+0.25) \square c$

B1 A car travels at a constant speed, then brakes hard as the driver sees a rabbit, then gradually accelerates again to the previous speed, and continues. Sketch the acceleration, speed and distance travelled as functions of time.

B2 A crane lifts 500 kg vertically at a rate of $2 \mathrm{~m} \mathrm{~s}^{-1}$. What is the power exerted by the crane's motor? [Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.] [3]

B3 A $0.3-\mathrm{kg}$ mass is swung in a circle by a $2-\mathrm{m}$ piece of string at one revolution per second. What is its angular momentum?

B4 Define the quantity torque.
[3]

B5 A boy pushes a $50-\mathrm{kg}$ cart up an incline, 30° to the hon What is the minimum force with which the boy needs to pu [Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.]

B6 What is the gravitational potential 1000 km away from a mass of $10^{22} \mathrm{~kg}$?

B7 An electron moves so that its total energy is twice its rest-mass energy. What is its speed?

B8 What is the momentum of a proton travelling at $0.8 c$?

C1 A particle has a momentum as a function of time given by $p=2$ $\mathrm{kg} \mathrm{m} \mathrm{s}{ }^{-1}$. What is the force acting on the particle?
The particle as a mass of 0.1 kg . Assuming that it starts at $x=0$ at $t=0$, find the distance, x, as a function of time.

Sketch a plot of the power being gained by the particle as a function of time.

What is the power being gained by the particle at the time $t=2 \mathrm{~s}$?

What is the energy transfered to the particle over the first two seconds?

If the particle's mass was not constant, but was decreasing with time, with everything else above remaining the same, would the energy transfered over the first two seconds be higher or lower? Justify your answer.

C2 A medieval catapult is made of a thin wooden beam of length L and mass M rotating about an axis one third of the way from one end. Starting from $I=\int r^{2} d m$ show the moment of inertia of the beam is $I=M L^{2} / 9$.

A counterweight mass of 100 kg is attached to the shorter end of the beam. The beam is 6 m long and has a mass of 30 kg . What is the total moment of inertia?

The catapult starts from rest. A torque of 1300 Nm is applied for 2 s , causing a light projectile to be thrown from the longer arm of the catapult. What is the linear velocity of the projectile as ejected at 2 s ?

C3 Given that a particle in circular motion has a position gin vector

$$
\boldsymbol{r}=A \cos (\omega t) \hat{\imath}+A \sin (\omega t) \hat{\boldsymbol{\jmath}}
$$

(for orthogonal directions $\hat{\boldsymbol{\imath}}$ and $\hat{\boldsymbol{\jmath}}$ where A is a constant and t the time) show that the centripetal acceleration is $a=-r \omega^{2}$.

Hence show that a space station in a circular orbit around a mass M at a distance r has an orbital speed given by $v=\sqrt{G M / r}$. What is this speed for a space station that is in a circular orbit 100 km above a planet that has a mass of $1.0 \times 10^{24} \mathrm{~kg}$, a radius of 4000 km , and no atmosphere?

A projectile is fired backwards from the space station with a velocity of $200 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the space station, in the opposite direction to the space station's orbital motion. Describe qualitatively the future path of the projectile. Also, describe the effect on the space station of launching the projectile.

Such a projectile ends up hitting the planet. At what speed does it hit?

Would you expect this speed to be greater than or less than that of a meteorite falling onto the planet from deep space? Justify your answer.

C4 Using the Lorentz transforms, show that a length measu a frame S, appears to be contracted to a length l / γ when from a frame S^{\prime} moving with respect to S.

Cosmic-ray muons are created 5 km above the Earth's surface and travel downwards at a speed of $0.995 c$. These particles are unstable and decay with a typical lifetime of $2.2 \times 10^{-6} \mathrm{~s}$. How far does a muon typically travel, as seen from the muon's frame? As viewed from the muon's frame, does it get as far as the Earth's surface? Justify and explain your answers.
[10]
Now consider the perspective of an observer stationary on Earth's surface, watching the muon's being created 5 km above. Would that observer agree that the muons would travel as far as Earth's surface? Justify and explain your answer.

A detector stops 100 cosmic-ray muons. Given that the rest-mass of the muon is $1.88 \times 10^{-28} \mathrm{~kg}$, what is the energy absorbed by the detector?

