The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY
EXAMINATIONS, 2011/12

Level II
Thursday $12^{\text {th }}$ January 2012, 09.30-11:30
PHYSICS/ASTROPHYSICS
PHY-20006

QUANTUM MECHANICS

Candidates should attempt ALL of PART A and TWO questions from PART B.

PART A yields 40% of the marks, PART B yields 60%.

A sheet of useful formulae can be found on page 8.

PART A Answer all TEN questions

A1 Give a physical interpretation of the wave function Ψ in terms of the observed position of the particle and explain how this leads to the concept of a normalised wavefunction.

A2 Explain the following concepts and give an example of a physical system that demonstrates each concept.

- Wave-particle duality.
- Quantisation of energy.

A3 Calculate the expectation value for the position, $\langle x\rangle$, of a particle with the normalized wave function

$$
\Psi(x, t)=\sqrt{2 \pi} e^{-\pi x} e^{-i \omega t} \quad x>0 .
$$

You may use the following integral without proof in your answer.

$$
\begin{equation*}
\int_{0}^{\infty} r^{k} \exp (-\alpha r) d r=\frac{k!}{\alpha^{k+1}} \tag{4}
\end{equation*}
$$

A4 State three differences between the predictions of classical physics and the predictions of quantum mechanics for the properties of a particle in a harmonic oscillator potential, $V(x)=\frac{1}{2} k x^{2}$.

A5 Sketch the energy eigenfunction, ψ_{1} and ψ_{2}, for the ground state and first excited state of the finite square-well potential

$$
V(x)= \begin{cases}0 & x<-a \\ -V_{0} & -a \leq x \leq a \\ 0 & x>a\end{cases}
$$

A6 Calculate the expectation value $\langle E\rangle$ and uncertainty ΔE for the energy of a particle with the wavefunction

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2}} \psi_{1}(x) e^{-i E_{1} t / \hbar}+\frac{1}{\sqrt{2}} \psi_{2}(x) e^{-i E_{2} t / \hbar}, \tag{4}
\end{equation*}
$$

where $E_{1}=1 \mathrm{eV}$ and $E_{2}=2 \mathrm{eV}$.

A7 Estimate the natural line width in Hz for a transition from an energy level with a lifetime $\delta t=10^{-8} \mathrm{~s}$.

A8 Explain why identical quantum particles in the same region of space are also indistinguishable.

A9 List all possible values of J, the magnitude of the total angular momentum, for an electron with orbital angular momentum quantum number $\ell=2$. Give your answers in units of \hbar.

A10 Explain the origin of "fine-structure" in the spectrum of the hydrogen atom.

PART B Answer TWO out of FOUR questions

B1 A particle of mass m is trapped in the following potential:

$$
V(x)=\left\{\begin{array}{lc}
\infty & x<0 \\
0 & 0 \leq x \leq a \\
\infty & x>a
\end{array}\right.
$$

(a) Show that the solutions of the time independent Schrödinger equation are

$$
\psi_{n}(x)=\left\{\begin{array}{lrc}
0 & x<0 \\
\sqrt{\frac{2}{a}} \sin (n \pi x / a) & n=1,2,3, \ldots, & 0 \leq x \leq a \\
0 & & x>a
\end{array}\right.
$$

and so derive an expression for the energy of the particle in terms of a and m.
(b) What is the expectation value for x in this case? Justify your answer. (Hint: No calculation required.)
(c) Write down the wavefunction, $\Psi(x, t)$, for this particle in terms of a and m
(d) Discuss briefly whether the following two statements are consistent with each other.

- The momentum of a particle with kinetic energy E and mass m is given by $p^{2}=2 m E$.
- The expectation value of the momentum for the particle with the eigenfunction $\psi_{n}(x)$ is $\langle p\rangle=0$.

B2 Consider a particle with the wave function $\Psi(x, t)=\psi(x) e^{-i \omega t}$ wh

$$
\psi(x)=\left\{\begin{array}{lc}
0 & x \leq-1 \\
A[1+\cos (\pi x)] & -1<x<1 \\
0 & x \geq 1
\end{array}\right.
$$

(a) Normalize this wavefunction.
(b) Show that the ground state has definite parity and state its value.
(c) Calculate the uncertainty in the observed position, Δx.
(d) Show that ψ has the required mathematical properties for a valid wave function at the boundaries $x= \pm 1$.
(e) Discuss whether $\Psi(x, t)$ can be a valid wave function for a particle in a harmonic oscillator potential if it is not one of the energy eigenfunctions, $\psi_{n}(x)$.

You may use the following standards integrals without proof in your answers.

$$
\begin{gathered}
\int[1+\cos (x)]^{2} d x=\frac{1}{4}[6 x+8 \sin (x)+\sin (2 x)]+C \\
\int_{-1}^{1} x^{2}[1+\cos (\pi x)]^{2} d x=1-\frac{15}{2 \pi^{2}}
\end{gathered}
$$

B3 Consider a particle with mass m and energy E incident on a ban with height V_{B} and width a, such that $E<V_{B}$.

(a) Show that the energy eigenfunction

$$
\psi_{1}=A_{I} e^{i k x}+A_{R} e^{-i k x}
$$

is a solution of the time-independent Schrödinger equation for the region $x<0$ and hence derive an expression for k in terms of E.
(b) What is the physical interpretation of the quantity $R=\frac{\left|A_{R}\right|^{2}}{\left|A_{I}\right|^{2}}$?
(c) State an expression for the energy eigenfunction in the region $x>a$ in terms of an amplitude A_{T}. Explain your answer. [6]
(d) Give one example of a physical process that demonstrates or exploits the fact that $T=\frac{\left|A_{T}\right|^{2}}{\left|A_{I}\right|^{2}}>0$. State the physical origin and approximate value of the barrier potential, V_{B}, for your example.
(e) Discuss what happens to the value of T in the case that the mass m is very large.

B4 The wave functions for an electron in a simple model of the hydros atom have the form

$$
\Psi_{n, \ell, m_{\ell}}(r, \theta, \phi, t)=\frac{u(r)}{r} Y_{\ell, m_{\ell}}(\theta, \phi) e^{-i E t / \hbar}
$$

The radial eigenfunction for an electron in a hydrogen atom in the 2 p state is

$$
u(r)=\frac{1}{\sqrt{24 a_{0}}}\left(\frac{r}{a_{0}}\right)^{2} e^{-r / 2 a_{0}}
$$

where a_{0} is the Bohr radius.
(a) State the physical quantity most closely associated with each of the quantum numbers n, ℓ and m_{ℓ}, and state the possible values for each quantum number for an electron in a 2 p state.
(b) Calculate the expectation value, $\langle r\rangle$, for an electron in the 2 p state. You may use the following standard integral without proof in your answer.

$$
\begin{equation*}
\int_{0}^{\infty} r^{k} \exp (-\alpha r) d r=\frac{k!}{\alpha^{k+1}} \tag{8}
\end{equation*}
$$

(c) With the aid of a sketch, explain why $\langle r\rangle$ is different from the most probable observed value of r for the electron.
(d) With the aid of a labelled diagram, describe the main features of the Stern-Gerlach experiment. Explain how this experiment shows that the eigenfunctions $\Psi_{n, \ell, m_{\ell}}$ do not give a complete description for the properties of an electron in a hydrogen atom.

Quantum Mechanics formulae

Time independent Schrödinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}[E-V(x)] \psi=0
$$

