## EXAMINATION PAPER CONTAINS STUDENT'S ANSK

Please write your 8-digit student number here: $\square$

# The Handbook of Mathematics, Physics and Astronomy Data is provided 

KEELE UNIVERSITY

EXAMINATIONS, 2011/12
Level I
Wednesday $11^{\text {th }}$ January 2012, 16:00-18:00

## PHYSICS/ASTROPHYSICS

PHY-10024

## NATURE OF MATTER

Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered on the exam paper; PART C should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag.
PART A yields $16 \%$ of the marks, PART B yields $24 \%$, PART C yields 60\%.

Please do not write in the box below

| A |  | C1 |  | Total |
| :--- | :--- | :--- | :--- | :---: |
| B |  | C2 |  |  |
|  |  | C3 |  |  |
|  |  | C4 |  |  |

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PART A Tick the box by the answer you judge to be cor (marks are not deducted for incorrect answers)

A1 The mean free path of a molecule in a gas is
$\square$ the total distance travelled by a molecule in a gas
$\square$ the average distance travelled by a molecule between collisions
$\square$ the path a molecule travels in a gas
$\square$ the mean path travelled by molecules in a gas
A2 The equipartition theorem gives a satisfactory explanation of $\square$ the temperature dependence of the specific heats of gases $\square$ the temperature dependence of the specific heats of solids $\square$ the temperature dependence of the latent heats of fusion of solids $\square$ none of the above

A3 Heat is added to a gas, which is kept at constant volume. The gas
$\square$ does work on its surroundings
$\square$ does no work on its surroundings
$\square$ has work done on it by the surroundings
$\square$ stays at the same temperature as its surroundings
A4 A system is taken very slowly from an initial state to a final state. During this process, the heat $Q$ entering the system, and the work $W$ done by the system, are measured. What other property of the system changes during this process?
$\square$ mass
$\square$ number of moles
$\square$ internal energy
$\square$ ratio of specific heats

A5 Molecules in a hot diatomic gas display
$\square$ translational motion only
$\square$ translational and rotational motion
$\square$ translational and vibrational motion
$\square$ translational, rotational and vibrational motion
A6 Which of the following is not a state variable of an ideal gas?

| $\square$ pressure | $\square$ boiling point |
| :--- | :--- |
| $\square$ internal energy | $\square$ temperature |

A7 In an adiabatic change in a gas,
$\square$ the pressure of the gas is held constant
$\square$ the temperature of the gas is held constant
$\square$ the gas cools at a constant rate
$\square$ the gas is thermally isolated from its surroundings
A8 The uncertainty principle limits simultaneous knowledge of
$\square$ energy and timeenergy and momentum
$\square$ momentum and time
$\square$ time and position

A9 During a nuclear reaction, which of the following need not be conserved?
$\square$ momentum
$\square$ lepton number

A10 The binding energy of a valence (outer) electron in an atom is typically
$\square$ a few eVa few keVa few MeV $\square$ a few J

A11 The size of an atomic nucleus is typically
$\square 10^{-15} \mathrm{~m}$
$\square 10^{-10} \mathrm{~m}$
$\square 10^{-18} \mathrm{~m}$
$\square 10^{-6} \mathrm{~m}$

A12 Which one of the following indicates the wave nature of elect netic radiation?
$\square$ the photoelectric effect
$\square$ the Compton effect
$\square$ constancy of speed in any inertial reference frame
$\square$ diffraction

A13 Quantum mechanics predicts that, at absolute zero of temperature, $\square$ all motion ceases
$\square$ there is a residual motion due to the uncertainty principle
$\square$ matter ceases to exist
$\square$ everything collapses to zero volume
A14 Atomic number $Z$, atomic mass number $A$ and neutron number $N$ are related by
$\square A=Z-N$
$\square A=Z+N$
$\square A=Z+N+2$
$\square Z=N-A$
A15 Which is the strongest of the four fundamental interactions of Nature for two protons separated by $10^{-15} \mathrm{~m}$ ?
$\square$ strong nuclear
$\square$ electromagnetic
$\square$ gravitation
$\square$ weak nuclear
A16 In the nuclear reaction ${ }_{8}^{16} \mathrm{O}+{ }_{8}^{16} \mathrm{O} \rightarrow{ }_{15}^{31} \mathrm{P}+\mathrm{X}$, identify X :
$\square{ }_{3}^{6} \mathrm{Li}$
$\square{ }_{6}^{14} \mathrm{C}$
$\square{ }_{2}^{4} \mathrm{He}$
$\square{ }_{1}^{1} \mathrm{H}$

## PART B Answer all EIGHT questions

B1 How many ${ }^{40} \mathrm{Ca}$ atoms are there in a vessel containing 100 g of ${ }^{40} \mathrm{Ca}$ ?

B2 Write down the first law of thermodynamics, explaining the meaning of each term (including their sign).

B3 Briefly describe two different molecular bonds in solids and compare their strength.

B4 A burglar alarm consists of a photoelectric cell for which the wo function is 2.0 eV . Knowing this, a burglar covers her torch with a filter that transmits only light having wavelength longer than 600 nm . Determine whether the light from the torch will activate the alarm.

B5 The Rydberg formula gives the wavelength $\lambda$ of lines emitted by a hydrogen-like atom with nuclear charge $Z$ :

$$
\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)
$$

where the Rydberg constant $R=1.09737 \times 10^{7} \mathrm{~m}^{-1}$ and $n$ and $m$ are integers. Where in the spectrum would you find emission from a $\mathrm{C}^{5+}$ ion in which an electron makes a transition from $m=3$ to $n=2$ ?

B6 What is the kinetic energy of electrons suitable for studying aton using electron diffraction?

B7 Describe the Compton effect and explain why classical physics cannot explain it.

B8 Sketch the dependence of the binding energy per nucleon for atomic nuclei as a function of atomic mass, including key features of the plot.

## PART C Answer TWO out of FOUR questions

C1 (a) In the context of kinetic theory, what is a degree of freedom?
(b) What is the theorem of Equipartition of Energy?
(c) The figure below shows the temperature-dependence of the specific heat at constant volume for a diatomic gas (left) and a solid (right).



Explain, without using mathematics, the essential features of these diagrams.
(d) Assuming that $C_{\mathrm{p}}-C_{\mathrm{v}}=R$, in the usual notation, use the Equipartition Theorem to show that the ratio of specific heats $C_{\mathrm{p}} / C_{\mathrm{v}}=\gamma$ has the value $9 / 7$ for a gas consisting of diatomic molecules that both rotate and vibrate.
(e) Would you expect this result to be valid for low, intermediate or high temperatures? Explain your answer.

C2 (a) What is meant by
i. an adiabatic process
ii. an isothermal process?
(b) Neon gas, at initial temperature, $T=20^{\circ} \mathrm{C}$, and pressure, $P=1$ atm, is compressed isothermally to one fifth $(1 / 5)$ its initial volume. Determine the pressure and the temperature after compression.
(c) If the compression in part (b) had been performed adiabatically rather than isothermally, what would the pressure and temperature following compression be, assuming that the gas had the same initial conditions? [N.B. The ratio of specific heats for Ne is $5 / 3$.]
(d) If the gas in part (c) were $\mathrm{N}_{2}$ rather than Ne , what factor(s) in the calculation would be different? Explain your answer.

C3 (a) Show that the Bragg condition for the reflection of x -rays of wavelength $\lambda$ from crystal planes whose spacing is $d$ is

$$
2 d \sin \theta=n \lambda,
$$

where $\theta$ is the angle between the incident direction and the crystal plane, and $n$ is an integer.
(b) X-rays of wavelength 0.20 nm are reflected from a NaCl crystal; the first order maximum occurs at $15.5^{\circ}$. What value does this give for the inter-planar spacing of NaCl ?
(c) X-rays of wavelength 0.10 nm are used instead.
i. At what angle is the first peak observed?
ii. How many reflections are potentially observable? Explain your answer.

C4 (a) The radius, $R$, of an atomic nucleus of atomic number given, to a good degree of accuracy, by

$$
R=1.2 \times 10^{-15} A^{\frac{1}{3}} \mathrm{~m} ;
$$

calculate the radius of a ${ }_{84}^{212}$ Po nucleus.
(b) An $\alpha$ particle $\left({ }_{2}^{4} \mathrm{He}\right)$ is confined in a ${ }_{84}^{212} \mathrm{Po}$ nucleus. Assuming non-relativistic mechanics, what is the uncertainty, $\Delta v$, in the velocity of the $\alpha$ particle?
(c) If its actual speed inside the nucleus, $v$, is the same as $\Delta v$, what is the kinetic energy of the $\alpha$ particle, in MeV ?
(d) The ${ }_{84}^{212} \mathrm{Po}$ nucleus undergoes $\alpha$ decay, as follows:

$$
{ }_{84}^{212} \mathrm{Po} \rightarrow{ }_{82}^{208} \mathrm{~Pb}+\alpha .
$$

Work out the Coulomb potential energy, in MeV , of the $\alpha$ particle in the electric field of the ${ }_{82}^{208} \mathrm{~Pb}$ nucleus at the edge of the nucleus. [Assume that the ${ }_{82}^{208} \mathrm{~Pb}$ nucleus is the same size as the ${ }_{84}^{212} \mathrm{Po}$ nucleus, and that the dimensions of the $\alpha$ particle are negligible.]
(e) By how much does the kinetic energy of the $\alpha$ particle fall short of breaking away from the Pb nucleus?
(f) How can the decay still occur?

