StudentBounty.com EXAMINATION PAPER CONTAINS STUDENT'S ANSV

Please write your 8-digit student number here:

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2011/12

Level I

Monday 21^{st} May 2012, 09.30-11.30

PHYSICS/ASTROPHYSICS

PHY-10023

ELECTRICITY & STELLAR STRUCTURE

Candidates should attempt ALL of PARTS A and B, and ONE question from each of PARTS C and D. PARTS A and B should be answered on the exam paper; PARTS C and D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag. PART A yields 16% of the marks, PART B yields 24%, PART C yields 30%, PART D yields 30%.

Please do not write in the box below

A	C1	Total
В	C2	
	D1	
	D2	

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PHY-10023 Page 1 of 13

 $\begin{bmatrix} a \\ \downarrow \\ \downarrow \\ \downarrow \\ r \end{bmatrix} \xrightarrow{[b]}{} \xrightarrow{[b]}{} \xrightarrow{[r]}{} \xrightarrow{[r]}{} \xrightarrow{[c]}{} \xrightarrow{[c]}{} \xrightarrow{[c]}{} \xrightarrow{[c]}{} \xrightarrow{[d]}{} \xrightarrow{[d]}{} \xrightarrow{[d]}{} \xrightarrow{[f]}{} \xrightarrow{[c]}{} \xrightarrow{[c]}$

- A3 The potential energy of a dipole in an electric field is *maximum* when the dipole is:
 - parallel to the electric field
 - perpendicular to the electric field
 - \Box anti-parallel to the electric field (180° between the two vectors)
 - at an angle of 135° to the electric field

/Cont'd

[1]

PHY-10023 Page 2 of 13

www.StudentBounty.com

A6 What is the equivalent capacitance of the following circuit:

- of:
- \Box the particle velocity
- \Box the particle mass
- the particle charge
- the magnitude of the magnetic field [1]

/Cont'd

PHY-10023 Page 3 of 13

www.StudentBounty.com

	Studie	
A8	An electron is moving horizontally (parallel to the ground) from to east at constant velocity. Given that the earth's magnetic fit is horizontal and points to the north, in which direction does the magnetic force on the electron point? South Vertically upwards (towards the sky) East Vertically downwards (towards the ground)	[1]
A9	A 5 M_{\odot} star in the main-sequence has a approximate luminosity	
	$\Box \ 0.1 L_{\odot} \qquad \Box \ 1 L_{\odot} \qquad \Box \ 5 L_{\odot} \qquad \Box \ 125 L_{\odot}$	[1]
A10	The main-sequence lifetime of a star is mainly determined by its	
	□ radius □ pressure □ mass □ temperature	[1]
A11	During the formation of a star, contraction stops when	
	 hydrogen burning becomes the main energy source it becomes a red giant it collapses into a white dwarf hydrogen is exhausted in its core 	[1]
A12	The internal structure of a red giant star consists of	
	 hydrogen throughout the star helium throughout the star a core of hydrogen ash surrounded by a helium burning shell a core of helium ash surrounded by a hydrogen burning shell 	[1]
A13	The spectral type is an indicator of the star's:	
	age luminosity radius temperature	[1]
	/Cont'd	

PHY-10023 Page 4 of 13

	S.	
	i de	
A 1 A	De disting the new ort is the deminent energy there are not much as	
A14	Radiative transport is the dominant energy transport mechanis	43.
	\Box in the Sun's interior	2
	\Box in the Sun's outer layers	.03
	everywhere throughout the Sun	
	\Box nowhere in the Sun	[1]
A15	The most massive star in the main sequence of cluster A has a ma	JSS
	of $6 M_{\odot}$; the most massive star in the main sequence of cluster B h	as
	a mass of $1 M_{\odot}$. Which cluster is older?	
	\Box cluster A \Box cluster B	
	$\Box \text{ they are the same age } \Box \text{ it is not known}$	[1]
A16	Jeans' instability criterion describes	
	\Box the equilibrium between pressure and gravity	
	\Box the necessary condition for the onset of gravitational collapse	
	\Box how many stars form in a cluster	
	\Box the necessary condition for red giant expansion	[1]

Answer all EIGHT questions PART B

StudentBounty.com Calculate the ratio of the electric force to the gravitational force Β1 between two protons.

State Gauss's law and which physical quantity is usually deter-B2mined using this law. [3]

/Cont'd

PHY-10023 Page 6 of 13 B3 Sketch the electric potential due to a pair of charges -q and separated by a distance d.

B4 How does the velocity selected by a velocity selector apparatus depend on the magnetic and electric fields used (justify your answer)? [3]

/Cont'd

PHY-10023 Page 7 of 13

B5 Describe briefly the main nuclear reaction that occurs in the coof the Sun, stating how much energy is released per reaction. [3]

B6 What is the average mass of a particle in the interior of a star made of fully ionised helium? [3]

/Cont'd

PHY-10023 Page 8 of 13

www.StudentBounty.com

B7 Draw a schematic Hertzsprung-Russell diagram, indicating on the Sun's evolution. Label the axes, the Sun's position and the location of the main evolutionary stages. [3]

B8 Two stars in a binary have the same radius. Star A has luminosity $2 L_{\odot}$ and effective temperature 6500 K. If star B has luminosity $20 L_{\odot}$, what is its effective temperature? [3]

/Cont'd

PHY-10023 Page 9 of 13

PART C Answer ONE out of TWO questions

StudentBounty.com C1The switch in the circuit diagram below is initially closed.

- (a) What is the initial charge on the capacitor if its capacitance is $100 \,\mu\text{F}$ and the *emf* is $50 \,\text{V}$? [3]
- (b) The switch is opened at t = 0 s. The capacitor discharges and the charge on the capacitor at time t is given by $Q(t) = Q_0 e^{-t/(RC)}$ with $R = 10 \Omega$.
 - i. How long does it take for the charge on the capacitor to reach 10% of the initial value? [8]
 - ii. Derive an expression for the time evolution of the current in the circuit. [7]
 - iii. What is the magnitude of the current at the time determined in part (i)? [8]
 - iv. Which quantities influence the rate of discharge of the capacitor? |4|

/Cont'd

Page 10 of 13 PHY-10023

- (a) Using Kirchhof's laws, calculate the potential difference across each of E_1 and E_2 . [14]
- (b) State the rules to calculate the equivalent resistance for series and parallel combinations of resistors. [6]
- (c) Calculate the new current I_2 if the *emf* E_1 is replaced by a fourth resistor $R_4 = 5 \Omega$. [10]

/Cont'd

PHY-10023 Page 11 of 13

PART D Answer ONE out of TWO questions

StudentBounty.com D1 (a) By considering the balance of forces acting on a thin shell in the interior of a spherical star, derive the hydrostatic equilibrium equation

$$\left(\frac{dP}{dr}\right) = -\frac{GM(r)\rho(r)}{r^2}.$$
[9]

(b) Use the hydrostatic equilibrium equation to show that the central pressure in a star with uniform density is given by:

$$P_{\rm c} = \frac{3\,G\,M^2}{8\,\pi\,R^4}$$
[14]

(c) For the Sun the central pressure and temperature are respectively $P_{\rm c} \sim 10^{16} \,\mathrm{Pa}$ and $T_{\rm c} \sim 16 \times 10^6 \,\mathrm{K}$. Explain briefly why the material inside the star behaves like an ideal gas. [7]

/Cont'd

PHY-10023 Page 12 of 13

- StudentBounty.com D2(a) Name and describe briefly the two main mechanism for en transport inside the Sun. In which regions are those mechanism dominant?
 - (b) i. Name and describe briefly the main opacity mechanism deep in the interior of the Sun. [3]
 - ii. If $n_{\rm e}$ and $\sigma_{\rm T}$ are respectively the electron density and crosssection, show that the mean free path of a photon l is

$$l = \frac{1}{n_{\rm e}\sigma_{\rm T}} \tag{6}$$

iii. If the gas inside the Sun is ionised hydrogen show that

$$l = \frac{4\pi m_{\rm p} R_{\odot}^3}{3\,\sigma_{\rm T} M_{\odot}} \tag{7}$$

(c) If the total distance travelled by a photon is given by $D^2 = Nl^2$, where N is the number of scatterings, calculate the time for a photon to diffuse out of the Sun. [8]