Please write your 8-digit student number here:

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2011/12
Level I
Friday $13^{\text {th }}$ January 2012, 16:00-18:00
PHYSICS/ASTROPHYSICS
PHY-10022

MECHANICS, GRAVITY and RELATIVITY

Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered on the exam paper; PART C should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag. PART A yields 16% of the marks, PART B yields 24%, PART C yields 60%.

Please do not write in the box below

A		C1		Total
B		C2		
		C3		
		C4		

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PART A Tick one box by the answer you judge to bu

A1 The force acting on a body is equivalent to:
$\square d E / d t$
$\square E \times x$
$\square m^{2} v$
$\square d p / d t$

A2 The units of energy are equivalent to:
$\square \mathrm{m}^{2} \mathrm{~s}^{-2}$
$\square \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
$\square \mathrm{kg} \mathrm{m} \mathrm{s}$
$\square \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}$

A3 Given a force we can find the power by multiplying by:
\square energy
\square distance
\square velocity
\square mass

A4 A particle moving with distance $x=2 t^{2}$ has a velocity of:
$\square 8 t$

$\square 4 t$
$\square 4$
A5 The dot product of the vectors \boldsymbol{a} and \boldsymbol{b} is equivalent to:
$\square a b \cos \theta$
$\square a \wedge b$
$\square a b \sin \theta \hat{\boldsymbol{n}} \quad \square \sqrt{a^{2}+b^{2}}$

A6 Conservation of momentum results from the fact that the laws of physics are the same:
\square at different times
\square at different speeds
\square at different angles
\square in different places
A7 The angular momentum vector points:
\square along the axis of rotation
\square perpendicular to the torque
\square in the plane of the body
\square in the direction of θ
A8 A flywheel revolves 10 times in 10 seconds. Its angular velocity (in s^{-1}) is:
$\square \pi$
$\square \pi / 2$
$\square 2 \pi$
$\square 1$

A9 If the angle turned by a wheel is described by $\theta=30 t$ velocity is:
\square increasing $\quad \square$ decreasing $\quad \square$ zero $\quad \square$ constant
A10 The expression for gravitational potential energy $m g h$ is valid: \square always $\quad \square$ for small $m \quad \square$ for small $h \quad \square$ never

A11 Kepler's laws state that planetary orbits:
\square are always circular
\square have a fixed speed
\square don't depend on mass
\square are elliptical
A12 Two masses of M and $2 M$ are separated by r. Midway between the masses the gravitational potential is:

$$
\begin{equation*}
\square-12 G M / r \quad \square-6 G M / r \quad \square-3 G M / r \quad \square-3 G M / 2 r \tag{1}
\end{equation*}
$$

A13 Special Relativity applies only to:
\square heavy bodies
uniform relative motions
\square accelerating bodies
\square velocities near c
A14 A spacecraft's proper length is 8 m . An observer sees it approaching at $0.8 c$. The spacecraft's apparent length is:
$\square 4.4 \mathrm{~m}$
$\square 4.8 \mathrm{~m}$
$\square 5.4 \mathrm{~m}$
$\square 7.2 \mathrm{~m}$

A15 The total energy of a proton (rest mass $1.67 \times 10^{-27} \mathrm{~kg}$) travelling with a γ factor of 2.3 is (in $10^{-10} \mathrm{~J}$):
$\square 7.95$
$\square 3.46$
$\square 1.50$
$\square 0.65$
A16 Newton's laws of motion remain valid in Special Relativity provided the mass is replaced by:
$\square m_{0}$
$\square \gamma m_{0}$
$\square m c$
$\square \beta m$

B1 A mass of 10 g travels with a kinetic energy of 2 J . On hitting a target it comes to a halt in 0.1 s . What is the average force exerted by the mass on the target during the collision?
[3]

B2 A force of $F=\sqrt{x} \mathrm{~N}$, where x is distance, is applied to a particle over the range $0<x<5 \mathrm{~m}$. What is the work done?
[3]

B3 If a skier skis down a slope of 55° (to the horizontal); in the absence of friction, what is his acceleration down the slope in terms of g ?
[3]

B4 Newton's 2nd law can be written $F=d p / d t$ or $F=m a$. Write down statements equivalent to both of these for the quantity torque instead of force.

B5 A $100-\mathrm{g}$ mass is swung around on a piece of light strins long. What is the moment of inertia?

B6 A meteorite falls from infinity to collide with a planet which has a mass of $10^{25} \mathrm{~kg}$ and a radius of $10^{8} \mathrm{~m}$. At what speed does it strike?
[3]

B7 What is the momentum of a proton travelling at $0.8 c$?

B8 An elementary particle decays after $\tau=5 \mathrm{~s}$. It is fired at a speed of 0.999 c towards a detector located $10^{10} \mathrm{~m}$ away. Will it reach the detector? Justify your answer.
[3]

C1 A particle of mass 0.1 kg has a location as a function of time specifie by

$$
x=4 t-\frac{1}{2} \cos (2 \pi t) \mathrm{m} .
$$

Sketch (with labelled axes) the position, velocity and acceleration of the particle over the range $0<t<2 \mathrm{~s}$.

Find an expression for the force acting on the particle. at $t=1 \mathrm{~s}$?

Evaluate $d p / d t$ at $t=0.5 \mathrm{~s}$.

C2 Starting from $I=\int r^{2} d m$ show that a thin rod, length L, mass M, spinning about an axis at one end has a moment of inertia of $I=M L^{2} / 3$.

If such a rod (initially stationary) has a mass of 3 kg , a length of 0.8 m , and is spun up by a torque of 100 N m acting for 10 s , how fast is it now spinning? What is its angular momentum?
A second rod is similar to the first, but has a mass per length, λ, which is zero at the axis of rotation but rises linearly to $\lambda=6 \mathrm{~kg} \mathrm{~m}^{-1}$ at the other end. Find I for this second rod.
If this second rod is spun up by the same torque for the same time as the first rod, what is its angular momentum?

C3 A space station is in a circular orbit 150 km above Earth Use Newtonian gravity to show that its orbital speed v is gi $v^{2}=G M / r$ (where M is the Earth's mass, of $6.0 \times 10^{24} \mathrm{~kg}, r$ is orbital radius; Earth's radius is 6380 km).

Find the minimum energy per kilogram needed to launch a payload from Earth to the space station.

A probe is then launched from the space station; find the minimum energy per kilogram needed to send the probe to deep space.
Is there an overall energy advantage or disadvantage in sending a deep-space payload first to the space station and then launching it from there? Justify your answer.
Discuss whether you would need more or less energy to send such a probe to the planet Mercury compared to the planet Jupiter.

C4 Consider a frame S^{\prime} moving at velocity v along the x-axis with respect to a stationary frame S. Motion u_{x}^{\prime} as seen from S^{\prime} will have an x^{\prime} coordinate given by $x^{\prime}=u_{x}^{\prime} t^{\prime}$.

Use this and the Lorentz transforms to show that the same motion viewed from S would have a speed

$$
\begin{equation*}
u_{x}=\frac{v+u_{x}^{\prime}}{1+v u_{x}^{\prime} / c^{2}} \tag{10}
\end{equation*}
$$

As seen by one observer, Rocket A travelling at $0.8 c$ is being chased by Rocket B travelling at 0.9 c. As viewed from Rocket A , at what relative speed is Rocket B catching him?

Rocket A fires a missile at $0.1 c$ (as he sees it) at Rocket B. At what speed does Rocket B see the missile approaching?
Rocket B fires a laser beam at Rocket A; at what speed relative to Rocket A does this beam travel?

