EXAMINATION PAPER CONTAINS STUDENT'S ANSK

Please write your 8-digit student number here: \square

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2011/12
Level I
Friday $25^{\text {th }}$ May 2012, 09.30-11.30

PHYSICS/ASTROPHYSICS

> PHY-10020

OSCILLATIONS AND WAVES

Candidates should attempt ALL of PARTS A and B, and ONE question from each of PARTS C and D. PARTS A and B should be answered on the exam paper; PARTS C and D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag. PART A yields 16% of the marks, PART B yields 24%, PART C yields 30%, PART D yields 30%.

Please do not write in the box below

A		C1		Total
B		C2		
		D1		
		D2		

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PART A Tick one box by the answer you judge to be cor (marks are not deducted for incorrect answers)

A1 Which one of the following functions is not a general solution to the equation $\ddot{x}=-\omega^{2} x$? (ω, A, B, and ϕ_{0} are all constants.)

$$
\begin{array}{ll}
\square x(t)=A \cos \left(\omega t+\phi_{0}\right) & \\
\square x(t)=A \sin (\omega t)+B \cos (\omega t) \tag{1}\\
\square x(t)=A \sin (\omega t)+A \sin \phi_{0} & \square x(t)=A \sin \left(\omega t-\phi_{0}\right)
\end{array}
$$

A2 A block of mass m attached to the end of a spring undergoes simple harmonic motion with an angular frequency $\omega=12 \mathrm{~s}^{-1}$. A block of mass $4 m$, attached to the same spring, would have an angular frequency of
$\square 3 \mathrm{~s}^{-1}$
$\square 6 \mathrm{~s}^{-1}$
$\square 12 \mathrm{~s}^{-1}$
$\square 24 \mathrm{~s}^{-1}$

A3 A string of length L and a bob of mass m form a simple pendulum with period $T=2 \mathrm{~s}$. The period of a pendulum with the same length but a bob of mass 4 m is
$\square 0.5 \mathrm{~s}$
$\square 1 \mathrm{~s}$
$\square 2 \mathrm{~s}$
$\square 4 \mathrm{~s}$
[1]
A4 The total mechanical energy of a particle in simple harmonic motion depends on the amplitude of the motion as

$$
\begin{equation*}
\square E_{\mathrm{tot}} \propto A^{4} \quad \square E_{\mathrm{tot}} \propto A^{2} \quad \square E_{\mathrm{tot}} \propto A \quad \square E_{\mathrm{tot}} \propto A^{1 / 2} \tag{1}
\end{equation*}
$$

A5 The motion of an object in the field of a conservative force is approximately simple harmonic near any position where the
\square total energy is a local maximum.
\square total energy is a local minimum.
\square potential energy is a local maximum.
\square potential energy is a local minimum.

A6 An oscillator with mass $m=0.700 \mathrm{~kg}$ and natural angular fre $\omega_{0}=2.00 \mathrm{~s}^{-1}$ is damped by a force $F_{\text {damp }}=-b \dot{x}$. The minimum va of b that prevents oscillation about the equilibrium position is
$\square b=1.40 \mathrm{~kg} \mathrm{~s}^{-1}$
$\square b=1.96 \mathrm{~kg} \mathrm{~s}^{-1}$
$\square b=2.80 \mathrm{~kg} \mathrm{~s}^{-1}$
$\square b=4.00 \mathrm{~kg} \mathrm{~s}^{-1}$

A7 The frequency of a lightly damped harmonic oscillator is
\square less than its natural frequency.
\square greater than its natural frequency.
\square equal to its natural frequency.
\square independent of its natural frequency.
A8 The steady-state displacement and velocity of an oscillator driven by a harmonic external force are
\square in phase with each other.
$\square 45^{\circ}$ out of phase.
$\square 90^{\circ}$ out of phase.
$\square 180^{\circ}$ out of phase.
A9 A damped harmonic oscillator with natural angular frequency ω_{0} is driven by a force $F(t)=F_{0} \cos \left(\omega_{e} t\right)$. If $\omega_{e}=\omega_{0}$, then which one of the following statements about the steady state is not true?
\square The rate of work done by the driving force is maximized.
\square The rate of energy dissipation by the damping force is maximized.
\square The velocity amplitude is maximized.
\square The displacement amplitude is maximized.
A10 In the scheme of analogies between electrical circuits and mechanical oscillators, the charge on the capacitor in a circuit corresponds to the
\square mass
\square damping constant of a mechanical system.
\square displacement
\square effective spring constant

A11 Which one of the following functions could describe a wave tra in the $+x$ direction? $(A, k$, and ω are all positive constants.)

$$
\begin{array}{ll}
\square y(x, t)=A \sin \left(k^{2} x^{2}-\omega^{2} t^{2}\right) & \square y(x, t)=A[\sin (k x)-\sin (\omega t)] \\
\square y(x, t)=A \sin ^{2}(k x-\omega t) & \square y(x, t)=A \sin (k x+\omega t)
\end{array}
$$

A12 The displacement of particles in a wave travelling along the x axis is given by $y(x, t)=0.02 e^{(8 x+4 t)}$, for x and y in metres and t in seconds. The particle speed at $x=0$ at $t=0$ is
$\square 2 \mathrm{~m} \mathrm{~s}^{-1}$$0.5 \mathrm{~m} \mathrm{~s}^{-1}$
$\square 0.16 \mathrm{~m} \mathrm{~s}^{-1}$$0.08 \mathrm{~m} \mathrm{~s}^{-1}$

A13 The distance between two adjacent nodes in a standing wave of wavelength λ is
$\square \lambda /(2 \pi)$
$\square \lambda / 2$
$\square 2 \lambda$
$\square 2 \pi \lambda$

A14 Two travelling harmonic waves combine to make the standing wave $y(x, t)=0.02 \sin (20 \pi x) \cos (40 \pi t)$ (for x and y in metres, and t in seconds). The wavelength of each of the travelling waves is
$\square \lambda=0.01 \mathrm{~m}$
$\square \lambda=0.05 \mathrm{~m}$
$\square \lambda=0.1 \mathrm{~m}$
$\square \lambda=0.2 \mathrm{~m}$

A15 A string of length 24 cm vibrates in its third harmonic with both ends fixed. The wavelength of this standing wave is
$\square 8 \mathrm{~cm}$12 cm
$\square 16 \mathrm{~cm}$
$\square 36 \mathrm{~cm}$

A16 Two sources emit travelling harmonic waves in phase with the same amplitude, wavelength, frequency, and intensity I_{0}. The maximum total intensity at points where the waves interfere constructively is
$\square 2 I_{0}$
$\square 2 I_{0}^{2}$
\square
$4 I_{0}$ \square $4 I_{0}^{2}$

B1 A particle is in simple harmonic motion with an amplitude of 5 cm . At time $t=0$ it passes through its equilibrium position with a velocity of $-12 \mathrm{~cm} \mathrm{~s}^{-1}$. Calculate the period of the oscillation.

B2 An object of mass $m=0.080 \mathrm{~kg}$ is in simple harmonic motion about $x=0$ with angular frequency $\omega=3.0 \mathrm{~s}^{-1}$ and a total mechanical energy $E_{\text {tot }}=0.0081 \mathrm{~J}$. Find the positions x at which the object has speed $|\dot{x}|=0.36 \mathrm{~m} \mathrm{~s}^{-1}$.

B3 A particular oscillator of mass $m[\mathrm{~kg}]$ has the equation of motic

$$
\ddot{x}+\frac{0.40}{m} \dot{x}+0.64 x=0
$$

where x is measured in metres and time in seconds. For what values of m is the oscillator overdamped?

B4 A damped harmonic oscillator is driven by an external force, $F(t)=F_{0} \cos \left(\omega_{e} t\right)$. Briefly explain what is meant by the transient in the motion of such an oscillator, and write down the general form for the steady-state displacement as a function of time. [3]

B5 Illustrated are the two normal modes of oscillation for a pair identical blocks on identical springs, coupled by a third spring:

Write down a formula for the angular frequency of the symmetric mode. Is this frequency greater than or less than the frequency of the anti-symmetric mode? Justify your answers.

B6 Ultrasound travels through human tissue as a harmonic wave with speed $1600 \mathrm{~m} \mathrm{~s}^{-1}$, wavelength $4.5 \times 10^{-4} \mathrm{~m}$, and amplitude $1.8 \times$ $10^{-9} \mathrm{~m}$. Write the displacement $s(x, t)$ of molecules at depth x in the tissue at time t, assuming that $s=0$ at $x=t=0$.

B7 Verify that the function

$$
y(x, t)=(2 x-t)^{3}+\cos (2 x+t)
$$

is a solution of the one-dimensional wave equation.

B8 Two identical loudspeakers emit sound waves in phase, each with wavelength $\lambda=2 \mathrm{~m}$ and intensity $I_{0}=0.01 \mathrm{~W} \mathrm{~m}^{-2}$. What is the value of the total intensity at a point that is 30 m distant from one loudspeaker and 33 m from the other? (Justify your answer.)

PART C Answer ONE out of TWO questions

C1 (a) A 150-gram block is in simple harmonic motion on the end of a horizontal spring with force constant $k=375 \mathrm{~N} \mathrm{~m}^{-1}$. At time $t=0$, the block is 1.2 cm from its equilibrium position and has a speed of $36 \mathrm{~cm} \mathrm{~s}^{-1}$. Find
i. the acceleration of the block at $t=0$; [2]
ii. the total mechanical energy of the block;
iii. the amplitude of the oscillation; [2]
iv. the phase constant of the oscillation;
v . one time at which the kinetic and potential energies of the block are equal.
(b) The Sun can be crudely approximated as a sphere with uniform mass density, ρ_{S}. Consider a particle of mass m moving inside the Sun along a purely radial direction through the centre. Suppose that the only force acting on the particle is the force of gravity: $F(r)=-G m M(r) / r^{2}$, where $M(r)$ is the mass of the Sun within radius r from the centre.
i. Show that the particle experiences simple harmonic motion with angular frequency $\omega=\sqrt{4 \pi G \rho_{S} / 3}$.
ii. The total mass of the Sun is $M_{s}=1.99 \times 10^{30} \mathrm{~kg}$ and its radius is $R_{S}=6.96 \times 10^{8} \mathrm{~m}$. Thus, evaluate the period of simple harmonic motion in the Sun.
iii. Calculate the maximum speed of a particle that is in simple harmonic motion in the Sun with an amplitude equal to R_{S}. Where in the Sun is this maximum speed achieved?

C2 The displacement x of a harmonic oscillator of mass m, which a natural angular frequency ω_{0} and is subjected to a damping forc characterized by a constant b, may be given by one of the following three functions of time:

$$
\begin{align*}
& x(t)=A_{0} e^{-b t / 2 m} \sin \left(\omega t+\phi_{0}\right) \quad \text { with } \omega \equiv \sqrt{\omega_{0}^{2}-b^{2} / 4 m^{2}} \tag{I}\\
& x(t)=e^{-b t / 2 m}\left(C_{1} t+C_{2}\right) \tag{II}\\
& x(t)=e^{-b t / 2 m}\left(B_{1} e^{q t}+B_{2} e^{-q t}\right) \quad \text { with } q \equiv \sqrt{b^{2} / 4 m^{2}-\omega_{0}^{2}} \tag{III}
\end{align*}
$$

(a) Write down the equation of motion that is solved by any of the functions (I)-(III). State the physical meaning of each term in the equation of motion.
(b) A block of mass $m=0.250 \mathrm{~kg}$ is attached to a spring with force constant $k=1.44 \mathrm{~N} \mathrm{~m}^{-1}$ and damping constant $b=1.50 \mathrm{~kg} \mathrm{~s}^{-1}$. The block is in equilibrium at time $t=0$, when it receives an impulse that gives it an initial velocity of $-1.80 \mathrm{~m} \mathrm{~s}^{-1}$.
i. Verify that this system is overdamped, and therefore state which one of equations (I), (II), or (III) above describes the motion of the block at $t>0$.
ii. Use the initial conditions given to determine both the position and the velocity of the block at any $t \geq 0$.
iii. Sketch $x(t)$ for this system. Show on the same sketch and explain (without calculation) how $x(t)$ would change if the value of b were doubled while keeping all other parameters and initial conditions the same.

PART D Answer ONE out of TWO questions

D1 (a) Explain why a wave travelling with speed v in one dimension must depend on position x and time t either in the combination $(x-v t)$ or in the combination $(x+v t)$.
(b) A string with uniform linear mass density μ is stretched along the x-axis and kept under a constant tension F. A transverse harmonic wave travels along the string, causing a displacement $y(x, t)$ at position x at time t. The kinetic energy per unit length in the string is given by

$$
\frac{d K}{d x}=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}
$$

and the potential energy per unit length is given by

$$
\frac{d U}{d x}=\frac{1}{2} F\left(\frac{\partial y}{\partial x}\right)^{2}
$$

i. Write a general form for the wave function $y(x, t)$ in terms of the wavenumber and angular frequency. State what each of the partial derivatives $\partial y / \partial t, \partial^{2} y / \partial t^{2}, \partial y / \partial x$, and $\partial^{2} y / \partial x^{2}$ represents physically.
ii. Show that any particle on the string undergoes simple harmonic motion.
iii. Use the one-dimensional wave equation to derive the speed of the wave in terms of its angular frequency and wavenumber.
iv. Given that $d K / d x=d U / d x$, infer a formula for the wave speed in terms of F and μ.

D2 (a) Two particular harmonic waves travelling along the x-axis bine to produce the standing wave

$$
y(x, t)=2 A \sin (k x) \cos (\omega t) .
$$

i. Write down the two travelling wave functions involved and verify explicitly that their superposition yields $y(x, t)$ as given.
ii. Derive the allowed wavelengths λ_{n} if this is a resonant standing wave confined to $0 \leq x \leq L$, with $x=0$ and $x=L$ both nodes. Find the positions of all nodes for the $4^{\text {th }}$ harmonic, and sketch this wave function at $t=0$.
(b) Two coherent sources, S_{1} and S_{2}, emit harmonic waves with the same amplitude A, angular frequency ω, wavenumber k, and phase constant ϕ_{0}. These waves interfere at a point P, which is a distance x_{1} from source S_{1} and a distance x_{2} from source S_{2}.
i. Show that the amplitude of the total wave at P is

$$
\begin{equation*}
A_{\text {tot }}(P)=2 A \cos \left[k\left(x_{1}-x_{2}\right) / 2\right] . \tag{8}
\end{equation*}
$$

ii. Hence, derive a general relation between the wavelength λ and the path difference $\left(x_{1}-x_{2}\right)$ at points P where there is total destructive interference.

