EXAMINATION PAPER CONTAINS STUDENT'S ANSK

Please write your 8-digit student number here: \square

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2010/11
Level I

Monday $16^{\text {th }}$ May 2011, 13.00-15.00

 PHYSICS/ASTROPHYSICS

 PHYSICS/ASTROPHYSICS}

PHY-10021

ELECTRICITY AND MAGNETISM

Candidates should attempt ALL of PARTS A and B, and ONE question from each of PARTS C and D. PARTS A and B should be answered on the exam paper; PARTS C and D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag. PART A yields 16% of the marks, PART B yields 24%, PART C yields 30%, PART D yields 30%.

Please do not write in the box below

A		C1		Total
B		C2		
		D1		
		D2		

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PART A Tick one box by the answer you judge to be con (marks are not deducted for incorrect answers)

A1 The electrostatic force between two point charges is 30 N . If the charge of both charges is tripled, then the force will be:
$\square 3.3 \mathrm{~N}$
10 N
90 N
270 N

A2 Which of the following graphs illustrate the variation of the electrostatic field, E, with distance from a point charge.

a
$\square \mathrm{b}$
$\square \mathrm{c}$
$\square \mathrm{d}$
A3 The electrostatic potentials at a point P due to charges Q_{1}, Q_{2}, and Q_{3} are $+40 \mathrm{~V},-10 \mathrm{~V}$ and -20 V , respectively. What is the net electrostatic potential at point P ?
$\square-70 \mathrm{~V}$
$\square-10 \mathrm{~V}$10 V
$\square+70 \mathrm{~V}$

A4 What is the electrostatic potential across a distance of 5 m in a uniform electric field, $E=20 \mathrm{~V} / \mathrm{m}$.
$\square 4 \mathrm{~V}$
$\square 20 \mathrm{~V}$25 V100 V

A5 The value of the capacitance of the parallel plate capacitor the dielectric material is $4 \mu \mathrm{~F}$. If the capacitor is filled equally w two dielectric materials with the dielectric constants k_{1} and k_{2}, the capacitance is:

$$
\begin{equation*}
\square \frac{k_{1}+k_{2}}{2 k_{1} k_{2}} \mu \mathrm{~F} \quad \square 2 k_{1} k_{2} \mu \mathrm{~F} \quad \square \frac{2 k_{1} k_{2}}{k_{1}+k_{2}} \mu \mathrm{~F} \quad \square 2\left(k_{1}+k_{2}\right) \mu \mathrm{F} \tag{1}
\end{equation*}
$$

A6 What capacitance would be required to store 5 J at a potential difference of 1000 V across the plates?
$\square 10^{-2} \mathrm{~F}$
$\square 5 \times 10^{-2} \mathrm{~F}$ \square $10^{-5} \mathrm{~F}$$5 \times 10^{-5} \mathrm{~F}$

A7 A transmission line carries a current of $10^{3} \mathrm{~A}$ from west to east. The earth's magnetic field is horizontal, points to the north, and has a magnitude of $0.5 \times 10^{-4} \mathrm{~T}$. What is the force on one meter of the wire?
$\square 0.05 \mathrm{~N}$
$\square 0.2 \mathrm{~N}$
$\square 50 \mathrm{~N}$
$\square 500 \mathrm{~N}$

A8 What is the equivalent resistance of the following circuit:

$\square 2.67 \Omega$
$\square 3 \Omega$
$\square 6 \Omega$
12Ω

A9 The magnetic field 1 cm away from an infinitely long current-carrying wire is 1 T . What is the magnetic field 2 cm away from the wire?
$\square 0.25 \mathrm{~T}$ \square 0.5 T
2 T4 T

A10 Inside a toroidal coil of rectangular cross-section, the magnetic field is:proportional to the radial distance from the centre of the coil.inversely proportional to the radial distance from the centre.
\square zero.
\square uniform.
A11 The induced emf in a circuit exposed to an external magnetic field does NOT depend on:the magnetic field.
\square the area enclosed by the circuit.
\square the orientation between the magnetic field and the circuit.
\square the source of the magnetic field.

A12 A rectangular loop of cross section $2.0 \mathrm{~m} \times 3.0 \mathrm{~m}$ is exposed to form 5 T magnetic field perpendicular to the loop. The loop is rota about an axis perpendicular to the field by 270°. What is the magnitude of the change in the flux?
$\square 15 \mathrm{~Wb}$30 Wb
$\square 45 \mathrm{~Wb}$60 Wb

A13 The time constant of an LR circuit is:
$\square \mathrm{LR}$$L / R$
$\square \mathrm{R} / \mathrm{L}$$1 / \mathrm{LR}$
[1]

A14 The natural angular frequency of an ideal (non-resistive) LC circuit is ω_{0}. When the resistance of the circuit is taken into account, what happens to the angular frequency, ω ?
$\square \omega=0$
$\square \omega<\omega_{0}$
$\square \omega=\omega_{0}$
$\square \omega>\omega_{0}$

A15 In an AC circuit, the reactance of an inductor is 10Ω. If the frequency is halved, the reactance of the inductor becomes:
$\square 5 \Omega$$10 \Omega$
$\square 20 \Omega$$40 \Omega$

A16 In an AC circuit, the phase difference between the voltage and the current is $-\phi$. The power factor is:
$\square-\sin (\phi)$
$\square \sin (\phi)$
$\square \cos (\phi)$
$\square-\tan (\phi)$

B1 The charge produced by rubbing a block of plastic with a cloth is 32 nC . Calculate the number of electrons that have been transferred in the process.
[3]

B2 A proton is accelerated from rest using an electric field, $E=$ $10^{5} \mathrm{~V} / \mathrm{m}$. Calculate the velocity of the proton after it has undergone a displacement of 2 m .

B3 Sketch the electric potential for a pair of charges $-q$ and separated by 10 cm .

B4 Calculate the magnetic and electric forces and the ratio of the two forces for a particle of charge 3 nC moving at $5000 \mathrm{~m} / \mathrm{s}$ in the presence of an electric field, $\mathrm{E}=10^{4} \mathrm{~V} / \mathrm{m}$ and a magnetic field, $\mathrm{B}=2 \mathrm{~T}$ (both B and E being perpendicular to the motion of the particle).

B5 Two infinitely long parallel wires carry currents of 2 A and 3 respectively, and are separated by a distance of 5 cm . Calculate the force per unit length exerted by one wire on the other.

B6 A solenoid is composed of n turns per unit length and has a cross sectional area A. The wires of the solenoid carry a current that varies as follows: $I=I_{0} \sin (\omega t)$. Obtain an expression for the self-induced emf.

B7 A $60-\mathrm{mH}$ inductor is connected to a source with an rms potent difference of 30 V and a frequency of 120 Hz . Calculate the peak current.

B8 Sketch two different circuit diagrams for a high-pass filter.
[3]

PART C Answer ONE out of TWO questions

C1 (a) State and explain Gauss's law.
(b) An infinite line of charge has a uniform charge per unit length, λ. Find the electric field at a perpendicular distance r from the line.
(c) An infinite flat sheet of charge has a uniform charge per unit area, σ. Find the electric field at a perpendicular distance r from the sheet.

C2 (a) State and explain Kirchhoff's rules for an electric circuit. [10]
(b) In the circuit diagram below, $I_{1}=3 \mathrm{~A}, I_{2}=2 \mathrm{~A}, E_{1}=10 \mathrm{~V}, E_{2}=$ 5 V , and $R_{1}=2 \Omega$.

i. Calculate the power delivered by E_{2}.
ii. Calculate the values for R_{2} and R_{3}.

D1 (a) State and explain Ampère's law.
(b) A long straight wire and a rectangular loop lie in the same plane, as shown below. The dimensions and currents are indicated.

i. Determine the net magnetic force exerted on the loop by the wire.
ii. Determine the magnetic flux through the loop due to the wire.
iii. The current varies as $I=(5 t+1) \mathrm{A}$, where t is the time in seconds. Calculate the induced emf across the loop.

D2 (a) Explain what is meant by resonance in an AC-circuit and an example application.
(b) A series LCR circuit is connected to a variable frequency sinusoidal signal generator with a peak voltage of $100 \mathrm{~V}, \mathrm{~L}=3 \mathrm{mH}$, and $\mathrm{R}=20 \Omega$.
i. The resonance frequency is 1000 Hz . Determine the capacitance of the capacitor.
ii. Calculate the amplitude of the current at resonance.
iii. Calculate the current flowing through the circuit when the frequency is 5 times the resonance frequency.
iv. Determine the phase angle and whether the voltage is leading or lagging the current

