StudentBounty.com **EXAMINATION PAPER CONTAINS STUDENT'S ANSW**

Please write your 8-digit student number here:

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2010/11

Level I

Monday 16^{th} May 2011, 13.00-15.00

PHYSICS/ASTROPHYSICS

PHY-10021

ELECTRICITY AND MAGNETISM

Candidates should attempt ALL of PARTS A and B, and ONE question from each of PARTS C and D. PARTS A and B should be answered on the exam paper; PARTS C and D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag. PART A yields 16% of the marks, PART B yields 24%, PART C yields 30%, PART D yields 30%.

Please do not write in the box below

Α	C1	Total
В	C2	
	D1	
	D2	

NOT TO BE REMOVED FROM THE EXAMINATION HALL

PHY-10021 Page 1 of 12

A2 Which of the following graphs illustrate the variation of the electrostatic field, E, with distance from a point charge.

A3 The electrostatic potentials at a point P due to charges Q_1 , Q_2 , and Q_3 are +40 V, -10 V and -20 V, respectively. What is the net electrostatic potential at point P?

$\Box -70 V$ $\Box -10 V$	$/$ \square 10 V	\square +70 V	[1]
---------------------------	--------------------	-----------------	-----

A4 What is the electrostatic potential across a distance of 5 m in a uniform electric field, E = 20 V/m.

ſ

/Cont'd

PHY-10021 Page 2 of 12

www.StudentBounty.com

A5 The value of the capacitance of the parallel plate capacitor w the dielectric material is 4μ F. If the capacitor is filled equally w two dielectric materials with the dielectric constants k_1 and k_2 , the capacitance is:

$$\Box \frac{k_1 + k_2}{2k_1 k_2} \mu F \quad \Box \ 2k_1 k_2 \mu F \quad \Box \ \frac{2k_1 k_2}{k_1 + k_2} \mu F \quad \Box \ 2(k_1 + k_2) \mu F \quad [1]$$

A6 What capacitance would be required to store 5 J at a potential difference of 1000 V across the plates?

 $\Box \ 10^{-2} \, \mathrm{F} \qquad \Box \ 5 \times 10^{-2} \, \mathrm{F} \qquad \Box \ 10^{-5} \, \mathrm{F} \qquad \Box \ 5 \times 10^{-5} \, \mathrm{F} \qquad [1]$

A7 A transmission line carries a current of 10^3 A from west to east. The earth's magnetic field is horizontal, points to the north, and has a magnitude of 0.5×10^{-4} T. What is the force on one meter of the wire?

$$\square 0.05 \text{ N} \qquad \square 0.2 \text{ N} \qquad \square 50 \text{ N} \qquad \square 500 \text{ N} \qquad [1]$$

/Cont'd

PHY-10021 Page 3 of 12

A8	What is the equivalent resistance of 2Ω	of the following $ \begin{array}{c} $	circuit:	Inty.com
	\Box 2.67 Ω \Box 3 Ω	$\Box 6 \Omega$	\Box 12 Ω	[1]
A9	The magnetic field 1 cm away from wire is 1 T. What is the magnetic	an infinitely lo field 2 cm away	ong current-carryin from the wire?	g
	$\square 0.25 \mathrm{T} \qquad \square 0.5 \mathrm{T}$	2 T	□ 4 T	[1]
A10	Inside a toroidal coil of rectangula	ar cross-section	, the magnetic fiel	d
	 proportional to the radial distance from the centre of the coil. inversely proportional to the radial distance from the centre. zero. 			
	\Box uniform.			[1]
A11	 The induced emf in a circuit expendence does NOT depend on: the magnetic field. the area enclosed by the circuit the orientation between the magnetic 	osed to an extense t. agnetic field and	ernal magnetic fiel d the circuit.	d
	\Box the source of the magnetic field	1.		[1]

/Cont'd

PHY-10021 Page 4 of 12

				Stude	
A12	A rectangular le form 5 T magne about an axis p tude of the char	oop of cross sect etic field perpend: perpendicular to nge in the flux?	ion $2.0 \text{ m} \times 3.0 \text{ m}$ icular to the loop the field by 270°.	is exposed to . The loop is rotat What is the magn	HINKY.COM
	\Box 15 Wb	□ 30 Wb	□ 45 Wb	\Box 60 Wb	[1]
A13	The time consta	ant of an LR circ	euit is:		
	□ LR	\Box L/R	□ R/L	\square 1/LR	[1]
A14	The natural an is ω_0 . When the happens to the $\Box \omega = 0$	gular frequency e resistance of the angular frequence $\Box \omega < \omega_0$	of an ideal (non- ne circuit is taken cy, ω ? $\Box \omega = \omega_0$	Theresistive) LC circular into account, when $\Box \ \omega > \omega_0$	it at [1]
A15	In an AC circuit is halved, the re	t, the reactance of the in	of an inductor is 1 nductor becomes:	0Ω . If the frequence	cy
	\Box 5 Ω	\Box 10 Ω	$\Box 20 \Omega$	\Box 40 Ω	[1]
A16	In an AC circu current is $-\phi$.	it, the phase dif The power factor	fference between : is:	the voltage and the	пе
	\Box $-\sin(\phi)$	$\Box \sin(\phi)$	$\Box \cos(\phi)$	\Box $- an(\phi)$	[1]

/Cont'd	l
---------	---

PART B Answer all EIGHT questions

StudentBounty.com B1 The charge produced by rubbing a block of plastic with a cloth is 32 nC. Calculate the number of electrons that have been transferred in the process. [3]

B2A proton is accelerated from rest using an electric field, E = $10^5 \,\mathrm{V/m}$. Calculate the velocity of the proton after it has undergone a displacement of 2 m. [3]

/Cont'd

PHY-10021 Page 6 of 12 B3 Sketch the electric potential for a pair of charges -q and -3 [3]

B4 Calculate the magnetic and electric forces and the ratio of the two forces for a particle of charge 3 nC moving at 5000 m/s in the presence of an electric field, $E = 10^4 \text{ V/m}$ and a magnetic field, B = 2 T (both B and E being perpendicular to the motion of the particle). [3]

/Cont'd

B5 Two infinitely long parallel wires carry currents of 2 A and 3 respectively, and are separated by a distance of 5 cm. Calculate the force per unit length exerted by one wire on the other. [3]

B6 A solenoid is composed of n turns per unit length and has a cross sectional area A. The wires of the solenoid carry a current that varies as follows: $I = I_0 \sin(\omega t)$. Obtain an expression for the self-induced emf. [3]

/Cont'd

PHY-10021 Page 8 of 12

B7 A 60-mH inductor is connected to a source with an rms potentidifference of 30 V and a frequency of 120 Hz. Calculate the peak current. [3]

B8 Sketch two different circuit diagrams for a high-pass filter. [3]

/Cont'd

PHY-10021 Page 9 of 12

PART C Answer ONE out of TWO questions

- C1(a) State and explain Gauss's law.
- StudentBounty.com (b) An infinite line of charge has a uniform charge per unit length, λ . Find the electric field at a perpendicular distance r from the line. |10|
 - (c) An infinite flat sheet of charge has a uniform charge per unit area, σ . Find the electric field at a perpendicular distance r from the sheet. |15|
- C2(a) State and explain Kirchhoff's rules for an electric circuit. |10|
 - (b) In the circuit diagram below, $I_1 = 3 \text{ A}$, $I_2 = 2 \text{ A}$, $E_1 = 10 \text{ V}$, $E_2 =$ 5 V, and $R_1 = 2 \Omega$.

i. Calculate the power delivered by E_2 . [2]

ii. Calculate the values for R_2 and R_3 . [18]

/Cont'd

PHY-10021 Page 10 of 12

www.StudentBounty.com

PART D Answer ONE out of TWO questions

- D1 (a) State and explain Ampère's law.
- StudentBounty.com (b) A long straight wire and a rectangular loop lie in the same plane, as shown below. The dimensions and currents are indicated.

- i. Determine the net magnetic force exerted on the loop by the wire. [10]
- ii. Determine the magnetic flux through the loop due to the wire. |10|
- iii. The current varies as I = (5t + 1) A, where t is the time in seconds. Calculate the induced emf across the loop. $\left[5\right]$

/Cont'd

PHY-10021 Page 11 of 12

- (a) Explain what is meant by *resonance* in an AC-circuit and D2an example application.
- StudentBounts.com (b) A series LCR circuit is connected to a variable frequency sinusoidal signal generator with a peak voltage of 100 V, L= 3 mH, and $R = 20 \Omega$.
 - i. The resonance frequency is 1000 Hz. Determine the capacitance of the capacitor. [5]
 - ii. Calculate the amplitude of the current at resonance. [5]
 - iii. Calculate the current flowing through the circuit when the frequency is 5 times the resonance frequency. [7]
 - iv. Determine the phase angle and whether the voltage is leading or lagging the current [3]