The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10
Level III

Wednesday $13^{\text {th }}$ January 2010, 9.30-11.30
PHYSICS/ASTROPHYSICS
PHY-30023

PARTICLES, ACCELERATORS AND REACTOR PHYSICS

Candidates should attempt to answer THREE questions.
/Cont'd

1. (a) Explain, in terms of the wave functions involved, the possible spin quan numbers for all baryons, specifically including the case of baryons composed of 3 quarks of identical flavours.
(b) The Δ^{++}baryon has quark structure uuu.
i. Explain how many members there are of the multiplet to which the Δ^{++} belongs and from particle charges deduce the 3 axis isospin quantum number T_{3} for the Δ^{++}.
ii. Deduce, with explanation, the isospin quantum number T for the multiplet.
(c) The Δ^{++}decays via the strong interaction to a π^{+}and a proton. These particles have masses 1230,140 and $938 \mathrm{MeV} / \mathrm{c}^{2}$ respectively.
i. Discuss the binding energies of the baryons involved.
ii. Calculate the kinetic energy available to the π^{+}and proton from a Δ^{++} decaying at rest.
iii. Draw a quark level Feynman diagram for the decay.
iv. If at decay the u quark in the π^{+}is red, explain the colours of the \bar{d} quark and each quark in the proton.
2. (a) A particle of momentum p and charge state q travelling through a magn field B follows a path of radius of curvature r. The magnetic rigidity is

$$
\rho=B r=\frac{p}{q e}
$$

State what is meant by the cyclotronfrequency, f, for particles in a cyclotron, with reference to both their motion and the voltage between the cyclotron dees and show that the magnetic rigidity equation leads to

$$
\begin{equation*}
f=\frac{q e B}{2 \pi m} \tag{15}
\end{equation*}
$$

for a particle of mass m.
(b) Explain the operational implications of the second equation of part (a) in the case of acceleration in a cyclotron to non-relativistic and relativistic energies and the consequent development and key features of the AVF cyclotron and the synchrocyclotron.
(c) Calculate the cyclotron frequency, in a magnetic field of 1.3 T , of
i. non-relativistic protons and
ii. protons having a kinetic energy of 1 GeV .
(d) In a particular synchrocyclotron the frequency is reduced by a factor of two as a pulse of beam is accelerated. Determine the ratio of the final and initial total energies.
3. (a) Describe, with the aid of a diagram showing the electric fields involved, principles of particle acceleration within a low energy linear accelerator. [30]
(b) Sketch a graph of the voltage used in a linear accelerator as a function of time and explain the amount and direction of the acceleration experienced by the particles at the relevant time periods.
(c) Show that the length of the nth drift tube is

$$
L_{n}=\frac{1}{f} \sqrt{\frac{n q e V}{2 m}}
$$

for a particle of mass m and charge state q if AC of optimum accelerating voltage V is used having frequency f.
(d) If a linear accelerator with a $500 \mathrm{kV}, 100 \mathrm{MHz}$ voltage is used to accelerate α particles from 0.5 MeV to 50 MeV calculate:
i. the number of drift tubes needed,
ii. the length of the first drift tube and [10]
iii. the length of the last drift tube.
(e) Contrast the design of a linear accelerator for use at high energies with the low energy linear accelerator of part (a).
4. (a) Define what is meant by mean free path and explain why this is large neutrons in matter.
(b) Describe the most common interactions of neutrons with a nucleus and comment on the effects of these on neutron flux or neutron energy.
(c) Give reasons why water is a good choice of moderator for use in a reactor and describe its main disadvantage.
(d) Describe the main design differences between a boiling water reactor and a pressurised water reactor, explaining which is the best design.
(e) For a flux of $5 \times 10^{13} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ of thermal neutrons passing through 1 kg of water, calculate the reaction rate for radiative capture, for which the cross section for water molecules is $6.6 \times 10^{-29} \mathrm{~m}^{2}$.
(f) Explain what is meant by thermal utilisation factor and calculate this for a reactor operating at critical condition with a mean number of fission neutrons per thermal neutron of 1.6 , a fast fission factor of 1.02 and a resonance escape probability of 0.8 .
5. (a) Define and describe the process of enrichment of uranium reactor fuel.
(b) The thermal neutron fission cross section for ${ }^{235} \mathrm{U}$ is 584 b . The thermal neutron absorption cross sections for ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ are 97 b and 2.75 b respectively. Calculate:
i. the fission cross section for natural uranium containing $0.72 \%{ }^{235} \mathrm{U}$, [5]
ii. the absorption cross section for natural uranium, [5]
iii. the fission cross section for uranium enriched to $2 \%{ }^{235} \mathrm{U}$ and [5]
iv. the absorption cross section for uranium enriched to $2 \%{ }^{235} \mathrm{U}$. [5]
(c) The mean number of neutrons produced in thermal neutron induced fission reactions on ${ }^{235} \mathrm{U}$ is 2.5 . Calculate the mean number of fission neutrons produced per thermal neutron in a reactor for
i. natural uranium and
ii. uranium enriched to $2 \%{ }^{235} \mathrm{U}$.
(d) Calculate the percentage ${ }^{235} \mathrm{U}$ content which would give a mean number of fission neutrons per thermal neutron of 2 .
(e) Discuss the suitability of natural uranium as a fuel for use in a graphite moderated gas cooled reactor, a pressurised water reactor and a Canadian deuterium-uranium (CANDU) reactor.

