The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level III

Wednesday $13^{\rm th}$ January 2010, 9.30-11.30

PHYSICS/ASTROPHYSICS

PHY-30023

PARTICLES, ACCELERATORS AND REACTOR PHYSICS

Candidates should attempt to answer THREE questions.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

/Cont'd

- StudentBounty.com (a) Explain, in terms of the wave functions involved, the possible spin quan 1. numbers for all baryons, specifically including the case of baryons compose of 3 quarks of identical flavours.
 - (b) The Δ^{++} baryon has quark structure uuu.
 - i. Explain how many members there are of the multiplet to which the Δ^{++} belongs and from particle charges deduce the 3 axis isospin quantum number T_3 for the Δ^{++} . [25]
 - ii. Deduce, with explanation, the isospin quantum number T for the multiplet. [10]
 - (c) The Δ^{++} decays via the strong interaction to a π^+ and a proton. These particles have masses 1230, 140 and 938 MeV/c^2 respectively.
 - i. Discuss the binding energies of the baryons involved. [15]
 - ii. Calculate the kinetic energy available to the π^+ and proton from a Δ^{++} decaying at rest. $\lfloor 5 \rfloor$
 - iii. Draw a quark level Feynman diagram for the decay. [10]
 - iv. If at decay the u quark in the π^+ is red, explain the colours of the \bar{d} quark and each quark in the proton. [5]

StudentBounty.com 2. (a) A particle of momentum p and charge state q travelling through a magnetic magnetic magnetic state q travelling through a magnetic magnetic magnetic state q travelling through a magnetic ma field B follows a path of radius of curvature r. The magnetic rigidity is

$$\rho = Br = \frac{p}{qe}$$

State what is meant by the cyclotron frequency, f, for particles in a cyclotron, with reference to both their motion and the voltage between the cyclotron dees and show that the magnetic rigidity equation leads to

$$f = \frac{qeB}{2\pi m}$$

for a particle of mass m.

- (b) Explain the operational implications of the second equation of part (a) in the case of acceleration in a cyclotron to non-relativistic and relativistic energies and the consequent development and key features of the AVF cyclotron and the synchrocyclotron. [50]
- (c) Calculate the cyclotron frequency, in a magnetic field of 1.3T, of
 - i. non-relativistic protons and [10]
 - ii. protons having a kinetic energy of 1GeV. [15]
- (d) In a particular synchrocyclotron the frequency is reduced by a factor of two as a pulse of beam is accelerated. Determine the ratio of the final and initial total energies. [10]

/Cont'd

0

[15]

- 3. (a) Describe, with the aid of a diagram showing the electric fields involved principles of particle acceleration within a low energy linear accelerator.[30]
- StudentBounty.com (b) Sketch a graph of the voltage used in a linear accelerator as a function of time and explain the amount and direction of the acceleration experienced by the particles at the relevant time periods. [20]
 - (c) Show that the length of the *n*th drift tube is

$$L_n = \frac{1}{f} \sqrt{\frac{nqeV}{2m}}$$

for a particle of mass m and charge state q if AC of optimum accelerating voltage V is used having frequency f. [10]

- (d) If a linear accelerator with a 500 kV, 100 MHz voltage is used to accelerate α particles from 0.5 MeV to 50 MeV calculate:
 - i. the number of drift tubes needed, [10]
 - ii. the length of the first drift tube and [10]
 - iii. the length of the last drift tube. [10]
- (e) Contrast the design of a linear accelerator for use at high energies with the low energy linear accelerator of part (a). [10]

- (a) Define what is meant by *mean free path* and explain why this is large 4. neutrons in matter.
- StudentBounty.com (b) Describe the most common interactions of neutrons with a nucleus and comment on the effects of these on neutron flux or neutron energy.
 - (c) Give reasons why water is a good choice of moderator for use in a reactor and describe its main disadvantage. [15]
 - (d) Describe the main design differences between a boiling water reactor and a pressurised water reactor, explaining which is the best design. [30]
 - (e) For a flux of $5 \times 10^{13} \,\mathrm{m}^{-2} \mathrm{s}^{-1}$ of thermal neutrons passing through 1kg of water, calculate the reaction rate for radiative capture, for which the cross section for water molecules is $6.6 \times 10^{-29} \text{ m}^2$. [15]
 - (f) Explain what is meant by *thermal utilisation factor* and calculate this for a reactor operating at critical condition with a mean number of fission neutrons per thermal neutron of 1.6, a fast fission factor of 1.02 and a resonance escape probability of 0.8. [15]

- (a) Define and describe the process of enrichment of uranium reactor fuel. 5.
- StudentBounty.com (b) The thermal neutron fission cross section for 235 U is 584 b. The thermal neutron absorption cross sections for 235 U and 238 U are 97 b and 2.75 b respectively. Calculate:
 - i. the fission cross section for natural uranium containing 0.72% ²³⁵U, [5]

 $\left[5\right]$

- ii. the absorption cross section for natural uranium,
- iii. the fission cross section for uranium enriched to 2% $^{235}\mathrm{U}$ and $\left[5\right]$
- iv. the absorption cross section for uranium enriched to 2% $^{235}\mathrm{U}.$ $\left[5\right]$
- (c) The mean number of neutrons produced in thermal neutron induced fission reactions on ²³⁵U is 2.5. Calculate the mean number of fission neutrons produced per thermal neutron in a reactor for
 - i. natural uranium and [10]
 - ii. uranium enriched to 2% ²³⁵U. [10]
- (d) Calculate the percentage ²³⁵U content which would give a mean number of fission neutrons per thermal neutron of 2. [20]
- (e) Discuss the suitability of natural uranium as a fuel for use in a graphite moderated gas cooled reactor, a pressurised water reactor and a Canadian deuterium-uranium (CANDU) reactor. [20]

END OF PAPER