The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level III

Monday $11^{\text {th }}$ January 2010, 13.00-15.00

PHYSICS/ASTROPHYSICS

PHY-30002

PHYSICS OF THE INTERSTELLAR MEDIUM

Candidates should attempt to answer THREE questions.

1. For a linear molecule, the rotational energy levels are given by

$$
E_{J}=\frac{\hbar^{2}}{2 \mathcal{I}} J(J+1)
$$

where \mathcal{I} is the moment of inertia of the molecule and $J(=0,1,2 \ldots)$ is the rotational quantum number.
(a) Define the partition function Z for a gas at temperature T.
(b) Show that the partition function Z may be approximated by

$$
\begin{equation*}
Z=\frac{2 \mathcal{I} k_{\mathrm{B}} T}{\hbar^{2}} \tag{30}
\end{equation*}
$$

(c) The interatomic distance for the ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ molecule is $1.128 \times 10^{-10} \mathrm{~m}$. Calculate the wavelength of the $J=1 \rightarrow J=0$ rotational transition. [10]
(d) A small molecular cloud with temperature 20 K lies at a distance of 500 pc . The ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ in the cloud emits radiation in the $J=1 \rightarrow J=0$ transition. Assuming that every photon emitted leaves the cloud, derive an expression for
i. the total power emitted, in terms of the number of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ molecules in the cloud;
ii. the flux observed at the Earth
(e) The observed flux is $3 \times 10^{-15} \mathrm{~W} \mathrm{~m}^{-2}$; calculate the mass of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ in the cloud.
[N.B. The Einstein A coefficient for the $J=1 \rightarrow J=0$ transition in ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ is $A_{10}=7.56 \times 10^{-8} \mathrm{~s}^{-1}$]
2. Write an account of the observable effects of free electrons in various astrophysical environments. Your account should include relativistic and non-relativistic electrons, and those with thermal and non-thermal energy distributions. Answers should include a qualitive explanation of the physical principles involved. [100]
3. A plane-polarized electromagnetic wave of circular frequency ω, pro distance D through the interstellar medium, which contains n_{e} electrons n magnetic field B; the direction of propagation is parallel to the magnetic fielo
(a) By considering the wave as a superposition of left- and right-handed circularly polarized waves, show that there arises a phase difference

$$
\left(\mu_{+}-\mu_{-}\right) \omega D / c
$$

between the left- and right-handed waves, where μ_{+}and μ_{-}correspond to the refractive indices for the left- and right-handed circularly polarized waves.
(b) Hence explain why the plane of polarization rotates as the wave propagates.
(c) Give an expression for the degree of rotation.
(d) Assuming that ω_{p} and ω_{g} are both $\ll \omega$, show that

$$
\begin{equation*}
\mu_{+}-\mu_{-} \simeq \frac{\omega_{\mathrm{p}}^{2} \omega_{\mathrm{g}}}{\omega^{3}} \tag{20}
\end{equation*}
$$

(e) Show further that the plane of polarization of a plane-polarized wave of frequency ν (where $\omega=2 \pi \nu$) rotates through an angle

$$
\begin{equation*}
\Delta \phi=\frac{1}{\nu^{2}} \frac{1}{8 \pi^{2} \epsilon_{0}} \frac{e^{3}}{m_{\mathrm{e}}^{2} c} \int_{\text {Path }} n_{\mathrm{e}} B d x \tag{30}
\end{equation*}
$$

(f) A Galactic radio source, which emits plane-polarized radiation, is at distance 1500 pc from the Earth. Along the path x from the source to the Earth the interstellar magnetic field B declines uniformly as

$$
B=B_{0}-\frac{x}{1500} B_{1}
$$

where x is the path in pc, $B_{0}=3 \times 10^{-10} \mathrm{~T}$ and $B_{1}=5 \times 10^{-12} \mathrm{~T}$. Also, for the first 1000 pc of the path, the electron density $n_{\mathrm{e}}=10^{4} \mathrm{~m}^{-3}$, but at 1000 pc jumps abruptly to $2 \times 10^{4} \mathrm{~m}^{-3}$ and maintains this value over the remainder of the path. Assuming that the radiation propagates along the magnetic field, calculate the Faraday rotation for radio waves of frequency $\nu=5 \mathrm{GHz}$.
[N.B. The refractive index μ for a radiation of circular frequency ω is given by

$$
\mu_{+}^{2}=1-\frac{\omega_{\mathrm{p}}^{2}}{\omega\left(\omega+\omega_{\mathrm{g}}\right)} \quad \mu_{-}^{2}=1-\frac{\omega_{\mathrm{p}}^{2}}{\omega\left(\omega-\omega_{\mathrm{g}}\right)}
$$

where the plasma frequency $\omega_{\mathrm{p}}=\sqrt{n_{e} e^{2} / \epsilon_{0} m_{\mathrm{e}}}$ and the electron gyrofrequency $\omega_{\mathrm{g}}=e B / m_{\mathrm{e}}$.]
4. (a) A hot star ionizises the gas in its environment. If the gas consis hydrogen, explain why, in considering the balance between ionizatr recombination in the gas, only recombination to excited levels of hydro need be considered.
(b) A star is located in a uniform gas of pure hydrogen, with density n_{H} atoms m^{-3}. The star emits S_{*} photons with energy $>13.6 \mathrm{eV}$. Show that the radius (the Strömgren radius) of the ionized region is

$$
R=\left(\frac{3 S_{*}}{4 \pi n_{\mathrm{H}}^{2} \beta}\right)^{1 / 3}
$$

where β is the recombination coefficient to excited levels.
(c) A B star emits 1.5×10^{49} photons s^{-1}, of which 21% are in the Lyman continuum. A compact stellar cluster contains 10 B-type stars. How big is the region of ionized hydrogen around the cluster if the hydrogen number density is $3 \times 10^{8} \mathrm{~m}^{-3}$?
(d) The gas around the cluster actually contains a small amount of carbon, such that the relative abundance of C relative to H is 3×10^{-4} by number. Assuming that 10% of the photons ionize C , that the remainder ionize H , what are the relative sizes of the ionized H and C regions around the cluster?
[50]
[N.B. The recombination coefficient to excited levels for H is $2.6 \times 10^{-19} \mathrm{~m}^{3} \mathrm{~s}^{-1}$; the recombination coefficient to excited states for atomic carbon is $4.7 \times 10^{-19} \mathrm{~m}^{3} \mathrm{~s}^{-1}$.]
5. (a) A dust grain of radius a is located a distance r from a star ha nosity L. Assuming that the grain behaves like a black body show th equilibrium temperature T_{d} of the dust grain is

$$
T_{\mathrm{d}}=\left(\frac{L}{16 \pi r^{2} \sigma}\right)^{1 / 4}
$$

where σ is the Stefan-Boltzmann constant.
(b) A population of spherical carbon particles is exposed to Lyman- α photons of wavelength 121.5 nm . Assuming that the particles behave like black bodies, determine the equilibrium temperature of the particles if the photon flux is $J=10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, deriving any expressions you need to use.
(c) The population of dust grains in part (b) have radius $a=5 \times 10^{-9} \mathrm{~m}$. Can these grains actually be said to have an equilibrium temperature? Give physical reasons for your answer.
[N.B. The density of carbon is $2000 \mathrm{~kg} \mathrm{~m}^{-3}$. At low temperatures, the molar specific heat of carbon is

$$
C_{V}=234 R\left(\frac{T_{\mathrm{d}}}{2000}\right)^{3}
$$

where R is the gas constant.]

