The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level III

Monday $11^{\rm th}$ January 2010, 13.00-15.00

PHYSICS/ASTROPHYSICS

$\mathbf{PHY}\text{-}30002$

PHYSICS OF THE INTERSTELLAR MEDIUM

Candidates should attempt to answer THREE questions.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

/Cont'd

1. For a linear molecule, the rotational energy levels are given by

$$E_J = \frac{\hbar^2}{2\mathcal{I}} J(J+1)$$

StudentBounty.com where \mathcal{I} is the moment of inertia of the molecule and J (= 0, 1, 2...) is the rotational quantum number.

- (a) Define the *partition function* Z for a gas at temperature T.
- (b) Show that the partition function Z may be approximated by

$$Z = \frac{2\mathcal{I} \, k_{\rm B} T}{\hbar^2} \tag{30}$$

- (c) The interatomic distance for the ${}^{12}C^{16}O$ molecule is 1.128×10^{-10} m. Calculate the wavelength of the $J = 1 \rightarrow J = 0$ rotational transition. [10]
- (d) A small molecular cloud with temperature 20 K lies at a distance of 500 pc. The ¹²C¹⁶O in the cloud emits radiation in the $J = 1 \rightarrow J = 0$ transition. Assuming that every photon emitted leaves the cloud, derive an expression for
 - i. the total power emitted, in terms of the number of ${}^{12}C^{16}O$ molecules in the cloud; [15]
 - [5]ii. the flux observed at the Earth
- (e) The observed flux is 3×10^{-15} W m⁻²; calculate the mass of ${}^{12}C^{16}O$ in the cloud. [30]

[N.B. The Einstein A coefficient for the $J = 1 \rightarrow J = 0$ transition in ¹²C¹⁶O is $A_{10} = 7.56 \times 10^{-8} \text{ s}^{-1}$]

2. Write an account of the observable effects of free electrons in various astrophysical environments. Your account should include relativistic and non-relativistic electrons, and those with thermal and non-thermal energy distributions. Answers should include a qualitive explanation of the physical principles involved. |100|

/Cont'd

- StudentBounts.com 3. A plane-polarized electromagnetic wave of circular frequency ω , prove distance D through the interstellar medium, which contains $n_{\rm e}$ electrons n. magnetic field B; the direction of propagation is parallel to the magnetic field
 - (a) By considering the wave as a superposition of left- and right-handed circularly polarized waves, show that there arises a phase difference

$$(\mu_+ - \mu_-) \omega D/c$$

between the left- and right-handed waves, where μ_+ and μ_- correspond to the refractive indices for the left- and right-handed circularly polarized waves.

- [10]
- (b) Hence explain why the plane of polarization rotates as the wave propagates. [5]
- (c) Give an expression for the degree of rotation. [5]
- (d) Assuming that $\omega_{\rm p}$ and $\omega_{\rm g}$ are both $\ll \omega$, show that

$$\mu_{+} - \mu_{-} \simeq \frac{\omega_{\rm p}^2 \omega_{\rm g}}{\omega^3} . \qquad [20]$$

(e) Show further that the plane of polarization of a plane-polarized wave of frequency ν (where $\omega = 2\pi\nu$) rotates through an angle

$$\Delta \phi = \frac{1}{\nu^2} \frac{1}{8\pi^2 \epsilon_0} \frac{e^3}{m_{\rm e}^2 c} \int_{\rm Path} n_{\rm e} B \, dx \,.$$
 [30]

(f) A Galactic radio source, which emits plane-polarized radiation, is at distance 1500 pc from the Earth. Along the path x from the source to the Earth the interstellar magnetic field B declines uniformly as

$$B = B_0 - \frac{x}{1500} B_1$$

where x is the path in pc, $B_0 = 3 \times 10^{-10}$ T and $B_1 = 5 \times 10^{-12}$ T. Also, for the first 1000 pc of the path, the electron density $n_{\rm e} = 10^4 \text{ m}^{-3}$, but at 1000 pc jumps abruptly to 2×10^4 m⁻³ and maintains this value over the remainder of the path. Assuming that the radiation propagates along the magnetic field, calculate the Faraday rotation for radio waves of frequency $\nu = 5$ GHz. [30]

N.B. The refractive index μ for a radiation of circular frequency ω is given by

$$\mu_{+}^{2} = 1 - \frac{\omega_{\mathrm{p}}^{2}}{\omega(\omega + \omega_{\mathrm{g}})} \qquad \mu_{-}^{2} = 1 - \frac{\omega_{\mathrm{p}}^{2}}{\omega(\omega - \omega_{\mathrm{g}})}$$

where the plasma frequency $\omega_{\rm p} = \sqrt{n_e e^2/\epsilon_0 m_{\rm e}}$ and the electron gyrofrequency $\omega_{\rm g} = eB/m_{\rm e}.]$

/Cont'd

www.StudentBounty.com

- StudentBounts.com (a) A hot star ionizises the gas in its environment. If the gas consis 4. hydrogen, explain why, in considering the balance between ionization recombination in the gas, only recombination to *excited* levels of hydro. need be considered.
 - (b) A star is located in a uniform gas of pure hydrogen, with density $n_{\rm H}$ atoms m^{-3} . The star emits S_* photons with energy > 13.6 eV. Show that the radius (the Strömgren radius) of the ionized region is

$$R = \left(\frac{3S_*}{4\pi n_{\rm H}^2\beta}\right)^{1/3}$$

where β is the recombination coefficient to excited levels.

- (c) A B star emits 1.5×10^{49} photons s⁻¹, of which 21% are in the Lyman continuum. A compact stellar cluster contains 10 B-type stars. How big is the region of ionized hydrogen around the cluster if the hydrogen number density is $3 \times 10^8 \text{ m}^{-3}$? [25]
- (d) The gas around the cluster actually contains a small amount of carbon, such that the relative abundance of C relative to H is 3×10^{-4} by number. Assuming that 10% of the photons ionize C, that the remainder ionize H, what are the relative sizes of the ionized H and C regions around the cluster? [50]

[N.B. The recombination coefficient to excited levels for H is 2.6×10^{-19} m³ s⁻¹; the recombination coefficient to excited states for atomic carbon is 4.7×10^{-19} m³ s⁻¹.]

/Cont'd

[15]

StudentBounts.com (a) A dust grain of radius a is located a distance r from a star has 5.nosity L. Assuming that the grain behaves like a black body show the equilibrium temperature $T_{\rm d}$ of the dust grain is

$$T_{\rm d} = \left(\frac{L}{16\pi r^2\sigma}\right)^{1/4}$$

where σ is the Stefan-Boltzmann constant.

- (b) A population of spherical carbon particles is exposed to Lyman- α photons of wavelength 121.5 nm. Assuming that the particles behave like black bodies, determine the equilibrium temperature of the particles if the photon flux is $J = 10^{20} \text{ m}^{-2} \text{ s}^{-1}$, deriving any expressions you need to use. [30]
- (c) The population of dust grains in part (b) have radius $a = 5 \times 10^{-9}$ m. Can these grains actually be said to have an equilibrium temperature? Give physical reasons for your answer. [50]

[N.B. The density of carbon is 2000 kg m^{-3} . At low temperatures, the molar specific heat of carbon is

$$C_V = 234R \left(\frac{T_{\rm d}}{2000}\right)^3$$

where R is the gas constant.]