The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level II

Monday $17^{\text {th }}$ May, $16.00-18.00$

PHYSICS/ASTROPHYSICS

PHY-20026

STATISTICAL MECHANICS AND SOLID STATE PHYSICS

Candidates should attempt to answer FOUR questions.

1. (a) In the context of crystallography, what is meant by
i. lattice;
ii. primitive unit cell;
iii. translation vector;
iv. basis;
v. reciprocal lattice vector;
vi. reciprocal space.
(b) The simple orthorhombic lattice has primitive translation vectors

$$
\begin{aligned}
\mathbf{a} & =a \mathbf{i} \\
\mathbf{b} & =b \mathbf{j} \\
\mathbf{c} & =c \mathbf{k}
\end{aligned}
$$

where \mathbf{i}, \mathbf{j} and \mathbf{k} are the usual cartesian unit vectors and a, b and c are constants. Determine
i. the volume of the unit cell;
ii. the reciprocal lattice vectors;
iii. the volume of the unit cell in the reciprocal lattice.
2. (a) Sketch the form of the Fermi-Dirac distribution for (i) a gas at T (ii) a gas at $T>0 \mathrm{~K}$. Indicate on your plot the location of the Fermi
(b) Assuming that the density of states is given by

$$
g(E) d E=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{2 / 3} E^{1 / 2} d E
$$

in the usual notation, show that the Fermi energy is given by

$$
E_{\mathrm{F}}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}
$$

where n is the number of fermions per unit volume.
(c) Sodium has density $988 \mathrm{~kg} \mathrm{~m}^{-3}$ and unit valency.
i. Calculate the number of conduction electrons m^{-3} in sodium.
ii. Calculate the Fermi energy of the electron gas.
iii. Determine whether or not the electrons are relativistic.
iv. Estimate the temperature of the classical gas for which the mean electron energy would be the same as your answer to part (c) ii.
3. Consider a system at temperature T containing N particles, of which n have energy ϵ_{i}, and the energy levels are non-degenerate.
(a) Write down expressions for
i. the number of particles n_{i} with energy ϵ_{i}
ii. the partition function Z
iii. the internal energy U
(b) Hence show that

$$
\begin{equation*}
\frac{\partial \ln Z}{\partial T}=\frac{U}{N k_{\mathrm{B}} T^{2}} \tag{30}
\end{equation*}
$$

(c) To a good approximation, the rotational partition function $Z_{\text {rot }}$ for diatomic molecules in a gas at temperature T is

$$
Z_{\mathrm{rot}}=\frac{2 \mathcal{I} k_{\mathrm{B}} T}{\hbar^{2}}
$$

where \mathcal{I} is the moment of inertia of the molecule. Determine the following quantities for the rotational energy of a kg-mole of a diatomic gas.
i. the internal energy
ii. and the specific heat
4. (a) Describe, without going into mathematical detail, the essential classical, Einstein and Debye theories of the specific heats of solids.
(b) Explain in each case, with the aid of a suitable sketch and without givi mathematical detail, how each theory describes the temperature-dependence of the specific heat of solids.
(c) The energy of a simple harmonic, one-dimensional quantum oscillator with frequency ω is given by

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega . \tag{10}
\end{equation*}
$$

Write down an expression for the partition function for the oscillator.
(d) The internal energy is given by

$$
U=N k_{\mathrm{B}} T^{2} \frac{\partial \ln Z}{\partial T}=\frac{N \hbar \omega}{2}+\frac{N \hbar \omega}{\exp \left[\hbar \omega / k_{\mathrm{B}} T\right]-1}
$$

Determine the specific heat of the one-dimensional harmonic oscillator. [20]
(e) What is the specific heat of the corresponding two-dimensional harmonic oscillator?
5. The figure shows part of a periodic one-dimensional step potential, whit indefinitely in both directions. The potential height and width are V ant spectively, and the separation of the steps is a. An electron with mass m energy $E<V$ moves in this potential.

(a) i. In the case that the product $b V$ is vanishingly small, what can be said about the electron?
[10]
ii. Write down an expression for the electron energy, in terms of the electron wavenumber k, for this case.
iii. Describe and explain the behaviour of the electron, and its energy, in the case that the product $b V$ is very large (but with b still $\ll a$)
(b) By considering the dependence of electron energy on $b V$, discuss the relevance of the results from part (a) i-iii to the formation of energy bands in solids.
(c) Sketch the dispersion relation for a free electron.
(d) Discuss how the dispersion relation in part (c) is amended in the presence of energy bands.
6. (a) The concentrations of conduction electrons (n) and holes (p) in a ductor at temperature T are given by

$$
\begin{aligned}
n & \simeq N_{\mathrm{c}} \exp \left[-\left(E_{\mathrm{c}}-E_{\mathrm{F}}\right) / k_{\mathrm{B}} T\right] \\
p & \simeq N_{\mathrm{v}} \exp \left[-\left(E_{\mathrm{F}}-E_{\mathrm{v}}\right) / k_{\mathrm{B}} T\right]
\end{aligned}
$$

respectively.
i. State what each of the undefined terms in these expressions means. [15]
ii. What are the assumptions that lead to these expressions?
(b) The figure shows the energy band for a semiconductor, in the region of the band gap.

i. Would you consider that the semiconductor is an n-type or a p-type? Explain your answer.
ii. Calculate the probability, at 270 K , that an electron occupies an energy state at the bottom of the conduction band.
iii. Calculate the probability, also at 270 K , that there is a vacancy in an energy state at the top of the valence band.
iv. For this semiconductor, the effective masses are $m_{\mathrm{e}}^{*}=0.05 m_{\mathrm{e}}$ and $m_{\mathrm{h}}^{*}=$ $0.2 m_{\mathrm{e}}$. Calculate the density of states at the top of the valence band and at the bottom of the conduction band at 270 K .
v. Hence calculate the concentration of holes at the top of the valence band and of electrons at the bottom of the conduction band.
[N.B. You may assume that the probability of occupancy of a state with energy E is

$$
f(\epsilon)=\frac{1}{1+\exp \left[\frac{E-E_{\mathrm{F}}}{k_{\mathrm{B}} T}\right]}
$$

and that

$$
\left.N_{\mathrm{c}}=N_{\mathrm{v}}=2\left(\frac{m^{*} k_{\mathrm{B}} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \text { where } m^{*} \text { is the effective mass. }\right]
$$

