The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level II

Monday 24^{th} May 2010, 13.00-15.00

PHYSICS

PHY-20009

NUCLEAR AND PARTICLE PHYSICS

Candidates should attempt to answer FOUR questions.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

/Cont'd

- (a) Explain what is meant by *binding energy* in nuclear and particle physics 1.
 - (b) Using the following table:

Explain what is m Using the followin	eant by <i>bind</i> g table:	<i>ding energy</i> in	nuclear an	nd particle	physics.	County con
Particle	up quark	down quark	neutron	proton	a particle	
Mass $(M_0 V/c^2)$:	up quark 226	226	020 572	038 380	2797 412	
mass (mev/c).	3 30	3 30	959.575	930.200	3727.413	

calculate

1. the binding energy per nucleon for an α particle and	i.	i.
--	----	----

- [10]ii. the binding energy per quark for a neutron.
- (c) i. Describe the quark structure of a meson. [10]
 - ii. The following mesons have strangeness S = -1:

Meson:	K^-	$\overline{\mathbf{K}^o}$	\mathbf{D}_S^-	\mathbf{B}_{S}^{o}
Mass (GeV/c^2) :	0.49	0.50	1.97	5.37

Deduce, with explanation, the quark structure of each. [25]

(d) The Ω^- has strangeness S = -3 and decays predominantly as follows:

$$\Omega^- \to \Lambda^o + \mathrm{K}^-$$

Strangeness is not conserved in this decay.

- i. State which interaction is responsible for the decay. [10]
- ii. Deduce, with explanation, the most likely quark structure of the Λ^{o} .[25]

The ener as follow	gies, spins ar s:	ıd pa	rities of low l_{i}	ying	excited states	s in so	ome nuclei are	entre gi	Rounty.co
State:	1st		2nd		3rd		4th		3
⁵⁸ Ni:	$1.454\mathrm{MeV}$	2^{+}	$2.776\mathrm{MeV}$	2^{+}	$2.902{\rm MeV}$	1^{+}	$2.942{\rm MeV}$	0^+	
74 Se:	$0.559{\rm MeV}$	2^{+}	$1.122{\rm MeV}$	0^+	$1.216{\rm MeV}$	2^{+}	$1.331{ m MeV}$	4^{+}	
166 Yb:	$0.102{\rm MeV}$	2^{+}	$0.331{\rm MeV}$	4^{+}	$0.668{\rm MeV}$	6^{+}	$1.098{\rm MeV}$	8^{+}	

(a) State and explain the spin and parity for the ground states of these nuclei. [15]

- (b) Using the information in the table of part (a), describe and explain which nuclear model is most applicable to each of these three nuclei. [50]
- (c) Calculate, using the most appropriate excited state, best estimates for:
 - i. the phonon frequency for the vibrational nucleus and [15]
 - ii. the moment of inertia of the rotational nucleus. [20]

0

- StudentBounty.com 3. A radioactive source is manufactured which initially contains $1.00 \,\mu g$ of pure which decays to stable ²⁰⁶Pb.
 - (a) Calculate the initial number of ²⁰⁶Bi nuclei in the source.
 - (b) After 14 days the activity of the source has decreased to a fraction 0.211 of its original activity. Calculate the half life of ²⁰⁶Bi. [25]
 - (c) Calculate the initial activity of the source. [10]
 - (d) Calculate the number of ²⁰⁶Pb nuclei in the source after 3 weeks. [15]
 - (e) Sketch plots as a function of time t of:
 - i. the number N_{Bi} of ²⁰⁶Bi nuclei and the number N_{Pb} of ²⁰⁶Pb nuclei, indicating on the axes the initial number of ²⁰⁶Bi nuclei and the numbers of each when these are equal and the time at which this occurs, [15]
 - ii. the total number $N_{total} = N_{Bi} + N_{Pb}$ of ²⁰⁶Bi and ²⁰⁶Pb nuclei and [5]
 - iii. $\ln N_{Bi}$ indicating the numerical values where the plot meets the axes.[20]

- (a) State how the binding energy per nucleon is related to nuclear stable 4. Sketch the binding energy per nucleon as a function of mass number.
- StudentBounty.com (b) The atomic numbers Z and masses M (1 u=931.5 MeV/c²) of some atoms are given below:

Atom	\underline{Z}	$M(\mathbf{u})$
65 Ni	28	64.930088
$^{65}\mathrm{Cu}$	29	64.927793
$^{65}\mathrm{Zn}$	30	64.929245
$^{1}\mathrm{H}$	1	1.007825
n	0	1.008665

- i. Calculate the binding energy of the only stable mass number A = 65nucleus listed. [30]
- ii. For each of the other A = 65 nuclei, explain whether it decays by α , β^+ or β^- emission. [20]
- (c) ⁶⁶Ni β -decays to ⁶⁶Cu ground state. The maximum energy of the β particle emitted is 225.6keV and the atomic mass of 66 Cu is 65.928872u.
 - i. Calculate the atomic mass of ⁶⁶Ni. [20]
 - ii. Discuss the kinetic energy of the daughter nucleus. [10]
 - iii. Explain why the β particles have a range of energies. [10]

- StudentBounts.com (a) Write equations for and state what happens in the following α particle 5.duced reactions on a ^{12}C target:
 - i. Elastic scattering.
 - ii. Two neutron pickup reaction.
 - iii. Fusion reaction to an excited nuclear state which γ decays with no ejectile. [10]
 - (b) For non-relativistic elastic scattering of an α particle from a larger target nucleus, at 180° from the incident direction, show that the energy T'_{α} of the scattered α particle is related to its incident energy T_{α} by

$$T'_{\alpha} = \left(\frac{m_X - m_{\alpha}}{m_X + m_{\alpha}}\right)^2 T_{\alpha}$$

where m_X and m_{α} are the masses of the target nucleus and α particle respectively. [50]

- (c) Quantitatively describe the distribution of the initial kinetic energy between the scattered α particle and recoiling nucleus in the situation of part (b) if the target is:
 - i. ¹²C [10]

/Cont'd

- StudentBounty.com 6. (a) Describe what happens during a neutron-induced fission reaction, explain the radioactivity of the fragments and why neutrons are emitted.
 - (b) Explain what is meant by *fast* and *thermal* neutrons.
 - (c) Using the mass information given below, calculate the energy released in the thermal neutron induced fission reaction:

$$n + {}^{235}U \to {}^{135}Xe + {}^{99}Sr + 2n$$
 [20]

	u (1u=931.5 MeV/c^2)
n	1.008665
$^{99}\mathrm{Sr}$	98.933315
$^{135}\mathrm{Xe}$	134.907207
$^{235}\mathrm{U}$	235.043923

(d) Assuming the average energy emitted per thermal-neutron-induced fission on 235 U is 190MeV, determine the minimum mass of 235 U, in kg, consumed in order to fuel a power station for one year, if the annual energy generated is 1.3×10^{15} J. [30]

END OF PAPER