The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY
EXAMINATIONS, 2009/10
Level II

Monday $24^{\text {th }}$ May 2010, 13.00-15.00
PHYSICS

PHY-20009

NUCLEAR AND PARTICLE PHYSICS

Candidates should attempt to answer FOUR questions.
/Cont'd

1. (a) Explain what is meant by binding energy in nuclear and particle physics.
(b) Using the following table:

Particle:	up quark	down quark	neutron	proton	α particle
Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right):$	336	336	939.573	938.280	3727.413

i. the binding energy per nucleon for an α particle and
ii. the binding energy per quark for a neutron.
(c) i. Describe the quark structure of a meson.
ii. The following mesons have strangeness $S=-1$:

Meson:	K^{-}	$\overline{\mathrm{K}^{o}}$	D_{S}^{-}	B_{S}^{o}
Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right):$	0.49	0.50	1.97	5.37

Deduce, with explanation, the quark structure of each.
(d) The Ω^{-}has strangeness $S=-3$ and decays predominantly as follows:

$$
\Omega^{-} \rightarrow \Lambda^{o}+\mathrm{K}^{-}
$$

Strangeness is not conserved in this decay.
i. State which interaction is responsible for the decay.
ii. Deduce, with explanation, the most likely quark structure of the Λ°.[25]
2. The energies, spins and parities of low lying excited states in some nuclei are \mathbf{g} as follows:

State:	1st		2nd		3rd		4th	
${ }^{58} \mathrm{Ni}$:	1.454 MeV	2^{+}	2.776 MeV	2^{+}	2.902 MeV	1^{+}	2.942 MeV	0^{+}
${ }^{74} \mathrm{Se}$:	0.559 MeV	2^{+}	1.122 MeV	0^{+}	1.216 MeV	2^{+}	1.331 MeV	4^{+}
${ }^{166} \mathrm{Yb}$:	0.102 MeV	2^{+}	0.331 MeV	4^{+}	0.668 MeV	6^{+}	1.098 MeV	8^{+}

(a) State and explain the spin and parity for the ground states of these nuclei.
(b) Using the information in the table of part (a), describe and explain which nuclear model is most applicable to each of these three nuclei.
(c) Calculate, using the most appropriate excited state, best estimates for:
i. the phonon frequency for the vibrational nucleus and
ii. the moment of inertia of the rotational nucleus.
3. A radioactive source is manufactured which initially contains $1.00 \mu \mathrm{~g}$ of pure ${ }^{2}$ which decays to stable ${ }^{206} \mathrm{~Pb}$.
(a) Calculate the initial number of ${ }^{206} \mathrm{Bi}$ nuclei in the source.
(b) After 14 days the activity of the source has decreased to a fraction 0.211 of its original activity. Calculate the half life of ${ }^{206} \mathrm{Bi}$.
(c) Calculate the initial activity of the source.
(d) Calculate the number of ${ }^{206} \mathrm{~Pb}$ nuclei in the source after 3 weeks.
(e) Sketch plots as a function of time t of:
i. the number $N_{B i}$ of ${ }^{206} \mathrm{Bi}$ nuclei and the number $N_{P b}$ of ${ }^{206} \mathrm{~Pb}$ nuclei, indicating on the axes the initial number of ${ }^{206} \mathrm{Bi}$ nuclei and the numbers of each when these are equal and the time at which this occurs,
ii. the total number $N_{\text {total }}=N_{B i}+N_{P b}$ of ${ }^{206} \mathrm{Bi}$ and ${ }^{206} \mathrm{~Pb}$ nuclei and \quad [5]
iii. $\ln N_{B i}$ indicating the numerical values where the plot meets the axes.[20]
4. (a) State how the binding energy per nucleon is related to nuclear stab Sketch the binding energy per nucleon as a function of mass number.
(b) The atomic numbers Z and masses $M\left(1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}\right)$ of some atoms are given below:

$\underline{{ }^{\text {Atom }}}$	\underline{Z}	$\underline{M(\mathrm{u})}$
${ }^{65} \mathrm{Ni}$	28	64.930088
${ }^{65} \mathrm{Cu}$	29	64.927793
${ }^{65} \mathrm{Zn}$	30	64.929245
${ }^{1} \mathrm{H}$	1	1.007825
n	0	1.008665

i. Calculate the binding energy of the only stable mass number $A=65$ nucleus listed.
ii. For each of the other $A=65$ nuclei, explain whether it decays by α, β^{+} or β^{-}emission.
(c) ${ }^{66} \mathrm{Ni} \beta$-decays to ${ }^{66} \mathrm{Cu}$ ground state. The maximum energy of the β particle emitted is 225.6 keV and the atomic mass of ${ }^{66} \mathrm{Cu}$ is 65.928872 u .
i. Calculate the atomic mass of ${ }^{66} \mathrm{Ni}$.
ii. Discuss the kinetic energy of the daughter nucleus.
iii. Explain why the β particles have a range of energies.
5. (a) Write equations for and state what happens in the following α particle duced reactions on a ${ }^{12} \mathrm{C}$ target:
i. Elastic scattering.
ii. Two neutron pickup reaction.
iii. Fusion reaction to an excited nuclear state which γ decays with no ejectile.
(b) For non-relativistic elastic scattering of an α particle from a larger target nucleus, at 180° from the incident direction, show that the energy T_{α}^{\prime} of the scattered α particle is related to its incident energy T_{α} by

$$
T_{\alpha}^{\prime}=\left(\frac{m_{X}-m_{\alpha}}{m_{X}+m_{\alpha}}\right)^{2} T_{\alpha}
$$

where m_{X} and m_{α} are the masses of the target nucleus and α particle respectively.
(c) Quantitatively describe the distribution of the initial kinetic energy between the scattered α particle and recoiling nucleus in the situation of part (b) if the target is:
i. ${ }^{12} \mathrm{C}$
ii. ${ }^{4} \mathrm{He}$.
6. (a) Describe what happens during a neutron-induced fission reaction, explaik the radioactivity of the fragments and why neutrons are emitted.
(b) Explain what is meant by fast and thermal neutrons.
(c) Using the mass information given below, calculate the energy released in the thermal neutron induced fission reaction:

$$
\begin{equation*}
\mathrm{n}+{ }^{235} \mathrm{U} \rightarrow{ }^{135} \mathrm{Xe}+{ }^{99} \mathrm{Sr}+2 \mathrm{n} \tag{20}
\end{equation*}
$$

	$\mathrm{u}\left(1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}\right)$
n	1.008665
${ }^{99} \mathrm{Sr}$	98.933315
${ }^{135} \mathrm{Xe}$	134.907207
${ }^{235} \mathrm{U}$	235.043923

(d) Assuming the average energy emitted per thermal-neutron-induced fission on ${ }^{235} \mathrm{U}$ is 190 MeV , determine the minimum mass of ${ }^{235} \mathrm{U}$, in kg , consumed in order to fuel a power station for one year, if the annual energy generated is $1.3 \times 10^{15} \mathrm{~J}$.

