The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY
EXAMINATIONS, 2009/10
Level II

Monday $18^{\text {th }}$ January 2010, 09.30-11.30
PHYSICS/ASTROPHYSICS

PHY-20006
QUANTUM MECHANICS

Candidates should attempt to answer FOUR questions.
/Cont'd

1. (a) State the interpretation of $\left|\Psi^{\star} \Psi\right|$, where Ψ is a wavefunction.
(b) The wavefunction for a particle has the following dependence on position, x.

$$
\psi(x)= \begin{cases}\psi_{1}=A \alpha \sin (x) & 0<x<3 \pi / 4 \\ \psi_{2}=A e^{-\beta x} & x \geq 3 \pi / 4\end{cases}
$$

Find the values of α and β for which ψ_{1} and ψ_{2} satisfy the requirements for an allowable wavefunction.
(c) The diagram below shows a potential $V(x)$ experienced by a particle with energy $E<0$, as indicated. The value of the potential for $x<0$ is ∞. Also shown are three functions, f_{1}, f_{2} and f_{3}.

i. For each function, give one reason why the function is not a valid solution of the time-independent Schrödinger equation for the particle in the potential $V(x)$.
ii. Discuss briefly whether a valid solution, $\psi(x)$, of the time-independent Schrödinger equation should have a continuous first derivative $\frac{d \psi}{d x}$ at the point $x=0$ in this case.
2. Consider a particle with mass m and energy E incident on a barrier with he V_{B} and width a, such that $E<V_{B}$.

(a) Show that the energy eigenfunction

$$
\psi_{1}=A_{I} e^{i k x}+A_{R} e^{-i k x},
$$

is a solution of the time-independent Schrödinger equation for the region $x<0$ if $k^{2}=2 m E / \hbar^{2}$.
(b) What is the physical interpretation of the quantity $R=\frac{\left|A_{R}\right|^{2}}{\left|A_{I}\right|^{2}}$?
(c) State an expression for the energy eigenfunction in the region $x>a$ in terms of the amplitude A_{T}. Explain your answer.
(d) Give one example of a physical process that demonstrates or exploits the fact that $T=\frac{\left|A_{T}\right|^{2}}{\left|A_{I}\right|^{2}}>0$. State the physical origin and approximate value of the barrier potential, V_{B}, for your example.
(e) What is the limiting value of A_{T} in the case that $m \rightarrow \infty$? Explain your answer.
[The time-independent Schrödinger equation in 1-dimension is:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi .
$$

3. A particle of mass m is located in the following "infinite square well" potent

$$
V(x)= \begin{cases}\infty & x<0 \\ 0 & 0 \leq x \leq 2 a \\ \infty & x>2 a\end{cases}
$$

The general solution of the time-independent Schrödinger equation in the region $0 \leq x \leq 2 a$ is

$$
\psi(x)=A \sin (k x)+B \cos (k x)
$$

where $k^{2}=2 m E / \hbar^{2}$.
(a) Use the boundary conditions at $x=0$ and $x=2 a$ to find the allowed values of B and k and, thus, the allowed values of the energy, E.
(b) Calculate the value of the constant A in terms of a. Explain your method clearly.
(c) Describe how the results above provide an explanation for the spectrum of black-body radiation emitted from a small hole in a hot cavity.
[The time-independent Schrödinger equation in 1-dimension is:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi
$$

You may find the following standard integral to be useful.

$$
\int \sin ^{2} x d x=\frac{1}{2}(x-\sin x \cos x)+C
$$

4. The solutions ψ_{n} of the time-independent Schrödinger equation for a partic mass m in an harmonic oscillator potential $V(x)=\frac{1}{2} k x^{2}$ have energy E_{n} given by

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad n=0,1,2, \ldots
$$

where $\omega=\sqrt{k / m}$.
Consider the case of a ${ }^{133} \mathrm{Cs}$ ion trapped in an harmonic oscillator potential with $k=1000 \mathrm{Nm}^{-1}$ in a state with the wavefunction $\Psi=c_{0} \Psi_{0}+c_{1} \Psi_{1}$.
(a) What is the interpretation of the constants c_{0} and c_{1} in the case of a wavefunction $\Psi=c_{0} \Psi_{0}+c_{1} \Psi_{1}$?
(b) For the case $c_{1}=\frac{1}{\sqrt{2}}$ calculate
i. c_{2}
ii. the expectation value for the energy, $\langle E\rangle$, and
iii. the uncertainty in the measured energy, ΔE.
(c) Calculate the frequency of the photon emitted by the ${ }^{133} \mathrm{Cs}$ ion during the transition $n=1 \rightarrow 0$.
(d) Discuss whether the quantities $\left|\Psi^{\star} \Psi\right|$ and $\left|\Psi_{1}^{\star} \Psi_{1}\right|$ vary with time and, if they vary, give a timescale for the variation.
5. The energy eigenfunctions for an electron in a potential

$$
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

have the form

$$
\psi_{n, \ell, m_{\ell}}(r, \theta, \phi)=R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\theta, \phi) .
$$

(a) What is the physical system represented by this potential?
(b) State the value of the following quantities for the electron in the state $\psi_{n, \ell, m_{\ell}}$.
i. $\langle E\rangle$
ii. $\left\langle L^{2}\right\rangle$
iii. $\left\langle L_{z}\right\rangle$
(c) The charge distribution for a system described by the potential $V(r)$ is observed to be spherically symmetric. What is the value of ℓ in this case? Explain your answer.
[15]
(d) Outline the main features and results of the Stern-Gerlach experiment. Explain how this experiment shows that the eigenfunctions $\psi_{n, \ell, m_{\ell}}$ do not give a complete description for the properties of an electron.
[40]
(e) Describe briefly the consequences of the Stern-Gerlach experiment for the energy levels of the electron in the potential $V(r)$.
/Cont'd
6. Consider a one-dimensional potential containing two identical, non-interac particles, p and q , with the wavefunction $\Psi\left(x_{p}, x_{q}, t\right)$.
(a) Give a physical interpretation of the quantity $\left|\Psi^{\star} \Psi\right| d x_{p} d x_{q}$.
(b) Use the fact that p and q are indistinguishable to show that $\Psi\left(x_{p}, x_{q}\right)$ must have definite exchange symmetry.
(c) Write down the antisymmetric energy eigenfunction ψ^{A} for the particles in terms of the energy eigenfunctions $\psi_{\alpha}(x)$ and $\psi_{\beta}(x)$ for a single particle in the same potential.
(d) What is the value of ψ^{A} in the case $\psi_{\alpha}(x)=\psi_{\beta}(x)$? Describe briefly the consequences of this observation for properties of multi-electron atoms. [35]

