The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level II

Monday $18^{\rm th}$ January 2010, 09.30-11.30

PHYSICS/ASTROPHYSICS

PHY-20006

QUANTUM MECHANICS

Candidates should attempt to answer FOUR questions.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

/Cont'd

- (a) State the interpretation of $|\Psi^*\Psi|$, where Ψ is a wavefunction. 1.
- StudentBounty.com (b) The wavefunction for a particle has the following dependence on position, x_{i}

$$\psi(x) = \begin{cases} \psi_1 = A\alpha \sin(x) & 0 < x < 3\pi/4 \\ \psi_2 = Ae^{-\beta x} & x \ge 3\pi/4 \end{cases}$$

Find the values of α and β for which ψ_1 and ψ_2 satisfy the requirements for an allowable wavefunction. [40]

(c) The diagram below shows a potential V(x) experienced by a particle with energy E < 0, as indicated. The value of the potential for x < 0 is ∞ . Also shown are three functions, f_1 , f_2 and f_3 .

- i. For each function, give one reason why the function is not a valid solution of the time-independent Schrödinger equation for the particle in the potential V(x). $[3 \times 10]$
- ii. Discuss briefly whether a valid solution, $\psi(x)$, of the time-independent Schrödinger equation should have a continuous first derivative $\frac{d\psi}{dx}$ at the point x = 0 in this case. [20]

/Cont'd

2. Consider a particle with mass m and energy E incident on a barrier with here V_B and width a, such that $E < V_B$.

(a) Show that the energy eigenfunction

$$\psi_1 = A_I e^{ikx} + A_R e^{-ikx},$$

is a solution of the time-independent Schrödinger equation for the region x < 0 if $k^2 = 2mE/\hbar^2$. [30]

- (b) What is the physical interpretation of the quantity $R = \frac{|A_R|^2}{|A_I|^2}$? [10]
- (c) State an expression for the energy eigenfunction in the region x > a in terms of the amplitude A_T . Explain your answer. [20]
- (d) Give one example of a physical process that demonstrates or exploits the fact that $T = \frac{|A_T|^2}{|A_I|^2} > 0$. State the physical origin and approximate value of the barrier potential, V_B , for your example. [20]
- (e) What is the limiting value of A_T in the case that $m \to \infty$? Explain your answer. [20]

The time-independent Schrödinger equation in 1-dimension is:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\,\psi = E\psi.$$

/Cont'd

StudentBounty.com 3. A particle of mass m is located in the following "infinite square well" potent

$$V(x) = \begin{cases} \infty & x < 0\\ 0 & 0 \le x \le 2a\\ \infty & x > 2a \end{cases}$$

The general solution of the time-independent Schrödinger equation in the region $0 \le x \le 2a$ is

$$\psi(x) = A\sin(kx) + B\cos(kx),$$

where $k^2 = 2mE/\hbar^2$.

- (a) Use the boundary conditions at x = 0 and x = 2a to find the allowed values of B and k and, thus, the allowed values of the energy, E. [30]
- (b) Calculate the value of the constant A in terms of a. Explain your method clearly. [30]
- (c) Describe how the results above provide an explanation for the spectrum of black-body radiation emitted from a small hole in a hot cavity. [40]

The time-independent Schrödinger equation in 1-dimension is:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\,\psi = E\psi$$

You may find the following standard integral to be useful.

$$\int \sin^2 x \, dx = \frac{1}{2} \left(x - \sin x \cos x \right) + C$$

StudentBounty.com 4. The solutions ψ_n of the time-independent Schrödinger equation for a partic mass m in an harmonic oscillator potential $V(x) = \frac{1}{2}kx^2$ have energy E_n given

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \qquad n = 0, 1, 2, \dots,$$

where $\omega = \sqrt{k/m}$.

Consider the case of a 133 Cs ion trapped in an harmonic oscillator potential with $k = 1000 \,\mathrm{Nm^{-1}}$ in a state with the wavefunction $\Psi = c_0 \Psi_0 + c_1 \Psi_1$.

- (a) What is the interpretation of the constants c_0 and c_1 in the case of a wavefunction $\Psi = c_0 \Psi_0 + c_1 \Psi_1$? [10]
- (b) For the case $c_1 = \frac{1}{\sqrt{2}}$ calculate
 - i. c_2
 - ii. the expectation value for the energy, $\langle E \rangle$, and
 - iii. the uncertainty in the measured energy, ΔE .

[40]

- (c) Calculate the frequency of the photon emitted by the ¹³³Cs ion during the transition $n = 1 \rightarrow 0$. [20]
- (d) Discuss whether the quantities $|\Psi^{\star}\Psi|$ and $|\Psi_{1}^{\star}\Psi_{1}|$ vary with time and, if they vary, give a timescale for the variation. [30]

5. The energy eigenfunctions for an electron in a potential

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r}$$

have the form

$$\psi_{n,\ell,m_{\ell}}(r,\theta,\phi) = R_{n,\ell}(r)Y_{\ell,m_{\ell}}(\theta,\phi).$$

- (a) What is the physical system represented by this potential? [10]
- (b) State the value of the following quantities for the electron in the state ψ_{n,ℓ,m_ℓ} .
 - i. $\langle E \rangle$ [5]
 - ii. $\langle L^2 \rangle$ [5]
 - iii. $\langle L_z \rangle$ [5]
- (c) The charge distribution for a system described by the potential V(r) is observed to be spherically symmetric. What is the value of ℓ in this case? Explain your answer. [15]
- (d) Outline the main features and results of the Stern-Gerlach experiment. Explain how this experiment shows that the eigenfunctions $\psi_{n,\ell,m_{\ell}}$ do not give a complete description for the properties of an electron. [40]
- (e) Describe briefly the consequences of the Stern-Gerlach experiment for the energy levels of the electron in the potential V(r). [20]

StudentBounty.com

- StudentBounty.com 6. Consider a one-dimensional potential containing two identical, non-interact particles, p and q, with the wavefunction $\Psi(x_p, x_q, t)$.
 - (a) Give a physical interpretation of the quantity $|\Psi^*\Psi| dx_p dx_q$.
 - (b) Use the fact that p and q are indistinguishable to show that $\Psi(x_p, x_q)$ must have definite exchange symmetry. [30]
 - (c) Write down the antisymmetric energy eigenfunction ψ^{A} for the particles in terms of the energy eigenfunctions $\psi_{\alpha}(x)$ and $\psi_{\beta}(x)$ for a single particle in the same potential. [15]
 - (d) What is the value of ψ^{A} in the case $\psi_{\alpha}(x) = \psi_{\beta}(x)$? Describe briefly the consequences of this observation for properties of multi-electron atoms. [35]

END OF PAPER