EXAMINATION PAPER CONTAINS STUDENT'S A

Please write your 8-digit student number here:

StudentBounts.com The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level I

Monday $18^{\rm th}$ January 2010, 09.30-11.30

PHYSICS/ASTROPHYSICS

PHY-10024

NATURE OF MATTER

Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered on the exam paper; PART C should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag.

PART A yields 16% of the marks, PART B yields 24%, PART C yields 60%. You are advised to divide your time in roughly these proportions.

Figures in brackets [] denote the marks allocated to the various parts of each question.

А	C1	Total
В	C2	
	C3	
	C4	

Please do not write in the box below

NOT TO BE REMOVED FROM THE EXAMINATION HALL /Cont'd

PAI	AT A TICK THE BOX BY THE ANSWER YOU JUDGE TO BE CORRE(MARKS ARE NOT DEDUCTED FOR INCORRECT ANSWERS)	ALBO,
A1	The mean free path of a molecule in a gas is	Eng
	 the total distance travelled by a molecule in a gas the average distance travelled by a molecule between collisions the path a molecule travels in a gas the mean path travelled by molecules in a gas 	[1] 2 , Com
A2	The equipartition theorem gives a satisfactory explanation of	
	 the temperature dependence of the specific heats of gases the temperature dependence of the specific heats of solids the temperature dependence of the latent heats of fusion of solids none of the above 	[1]
A3	The molar specific heat at constant volume, C_V , of a monatomic gas is	
	 always greater than the same as sometimes less than, sometimes greater than always less than 	[1]
A4	Heat is added to a gas, which is kept at constant volume. The gas	
	 does work on its surroundings does no work on its surroundings has work done on it by the surroundings stays at the same temperature as its surroundings 	[1]
A5	A system is taken very slowly from an initial state to a final state. During the process, the heat Q entering the system, and the work W done by the system, measured. What other property of the system changes during this process?	this are

internal enegy

ratio of specific heats

/Cont'd

[1]

		3.			
A6	Molecules in a hot diatomic gas displa	y T	~		
[translational motion only				
[translational and rotational motion				
[translational and vibrational motion	on	E.		
l	translational, rotational and vibra	tional motion			
A7	Which of the following is not a state v	rariable of an ideal gas?	.On		
[pressure	boiling point			
[internal energy	temperature	[1]		
A8	In an adiabatic change in a gas,				
[the pressure of the gas is held cons	stant			
[the temperature of the gas is held	constant			
[the gas cools at a constant rate		5 .1		
l	the gas is thermally isolated from	its surroundings	[1]		
A9 .	An atomic nucleus has $Z = 40, N = 40$) (where Z and N are respectively the	atomic		
r	number and neutron number for the n	\Box			
] 1	Z = 41, N = 41	$\Box Z = 41, N = 40$	[1]		
ļ	Z = 40, N = 42	Z = 42, N = 40			
A10	The binding energy of an outer electro	on in an atom is typically			
[a few eV	a few keV			
[a few MeV	a few J	[1]		
A11	The 'dimensions' of an atomic nucleus	are typically			
[$10^{-15} \mathrm{m}$	$10^{-9} \mathrm{m}$			
[$10^{-18} \mathrm{m}$	$10^{-6} \mathrm{m}$	[1]		
A12	The uncertainty principle limits simul	taneous knowledge of			
[energy and velocity	energy and momentum			
[momentum and position	time and position	[1]		
A13 During a nuclear reaction, which of the following <i>need not</i> be conserved?					
[charge	momentum			
[neutron number	lepton number	[1]		
		/C	ont'd		

A14	Which one of the following indicates the wave nature of electromagne	•?
	 the photoelectric effect the Compton effect 	Sente .
	 constancy of speed in any inertial reference frame diffraction 	[1] OH112
A15	Quantum mechanics predicts that, at absolute zero of temperature,	Com
	all motion ceases	
	there is a residual motion due to the uncertainty principle	
	matter ceases to exist	
	everything collapses to zero volume	[1]
A16	Which is the weakest of the four fundamental interactions of Nature?	
	strong nuclearelectromagneticgravitationweak nuclear	[1]

PART B Answer all EIGHT questions

StudentBounts.com For an ideal gas at temperature T, each degree of freedom can be ascribed an B1average energy $\frac{1}{2}k_{\rm B}T$. Use this to determine the molar specific heat at constant volume, $C_{\rm V}$, for an ideal monatomic gas.

The density of solid arsenic is 5730 kg m^{-3} . Estimate the distance between B2[3]arsenic atoms in a piece of solid arsenic.

B3 It is desired to see a virus, of dimensions 6 nm, using an electron mic What is the minimum voltage is needed to accelerate the electrons?

B4 The potential energy E of one ion in the field of another in a solid is described by the formula

$$E = -\frac{A}{r^6} + \frac{B}{r^{12}} \; ,$$

where A and B are constants and r is the distance between the ions. Sketch the variation of E with r; include on your diagram the variation of each of the terms contributing to the total potential energy; indicate on your diagram the equilibrium separation of the two ions. [3]

B5 Photons of wavelength 590 nm are emitted by a 50 W sodium lamp. How photons are emitted per second?

B6 A burglar alarm consists of a photoelectric cell for which the work function is
2.5 eV. Knowing this, a burglar covers her torch with a filter that transmits only light having wavelength longer than 520 nm. Determine whether the light from the torch will activate the alarm. [3]

B7 Sketch the temperature-dependence of the specific heat at constant vo. The provide the diatomic gas. Label the essential features of the plot.

B8 The mass of a proton is 1.007825 atomic mass units (amu), the mass of a neutron is 1.008665 amu, while the mass of a deuteron $\binom{2}{1}$ H) is 2.014102 amu. If 1 amu = 1.6604×10^{-27} kg, calculate the binding energy of a deuteron in MeV. [3]

PART C ANSWER TWO OUT OF FOUR QUESTIONS

- C1(a) What is the theorem of Equipartition of Energy?
 - (b) Show that, for a simple 3-dimensional crystalline solid, the Equipartition Theorem gives the result $C_V = 3R$ for the molar specific heat.
- StudentBounty.com (c) The specific heat at constant volume of an unknown (elemental) solid is measured at high temperature to be $260.0 \,\mathrm{J\,kg^{-1}\,K^{-1}}$. Estimate its atomic weight and identify the element. [5]
 - (d) Sketch the *actual* temperature-dependence of the specific heat at constant volume C_V for a solid. Indicate on your diagram how the classical value differs from the actual behaviour. $\left[5\right]$
 - (e) Determine the molar specific heat at constant volume for a 2-dimensional solid. [10]
- C2(a) What is meant by the *mean free path* for a molecule in a gas? [2]
 - (b) Show that the mean free path λ is given by

$$\lambda = \frac{1}{n\pi d^2} \ ,$$

where n is the number of molecules per unit volume and d is the molecular diameter. You may assume that all the molecules are identical. [10]

- (c) Estimate the mean free path for the following:
 - i. one of the 10^6 stars in the core of a globular cluster, each of which has diameter 6×10^8 m, and which are confined to a volume 10^{50} m³; [4]
 - ii. a hydrogen atom, of diameter 10^{-10} m, in interstellar space, where there are 10^5 H atoms m⁻³ [4]
- (d) Which of these estimates is the more reliable? Explain your answer. [10]

- C3(a) Give a qualitative account of the Compton effect, and indicate not be understood on the basis of classical physics.
- StudentBounty.com (b) In a Compton scattering experiment, X-rays of incident wavelength λ scattered by 'stationary' electrons; X-rays scattered at angle θ to the incident direction have wavelength λ' , where

$$\lambda' - \lambda = \frac{h}{mc} \left(1 - \cos \theta \right)$$

The incident X-rays have wavelength $\lambda = 0.0150$ nm. What is the wavelength of X-rays scattered at 45° ? $\left[5\right]$

- [10](c) What is the corresponding kinetic energy of the recoil electrons?
- (d) What is the maximum possible wavelength of scattered X-rays? [5]
- (e) If the electrons were replaced by protons in the Compton scattering experiment, how would the wavelength of the scattered X-rays differ, other things being equal? $\left[5\right]$
- C4High energy electrons, with a specific energy, are used to bombard a solid (elemental) surface; as a consequence, X-rays are emitted.
 - (a) Sketch the dependence of the intensity of X-rays on X-ray wavelength. Give a physical explanation for the essential features of the plot. [8]
 - (b) Describe Moseley's interpretation of the "characteristic" X-rays emitted. [8]
 - (c) What property of the atomic nucleus does this experiment reveal? [4]
 - (d) A certain metal is bombarded with electrons and X-rays with characteristic energy 8028 eV are emitted. Identify the metal. [10]

[N.B. You may assume that the Bohr formula for the wavelength λ of the photon emitted when an electron undergoes a transition from n_2 to n_1 is

$$\frac{1}{\lambda} = R_{\infty} Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

where R_{∞} is the Rydberg constant and Z is the atomic number.]