

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level I

Thursday 27^{th} May 2010, 13.00-15.00

PHYSICS/ASTROPHYSICS

PHY-10023

Electricity and Stellar Structure

Candidates should attempt ALL of PARTS A and B, and ONE question from PART C and ONE question from PART D.

PARTS A and B should be answered on the exam paper; PART C AND PART D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag.

PART A yields 16% of the marks, PART B yields 24%, PART C yields 30% and PART D yields 30%. You are advised to divide your time in roughly these proportions.

Figures in brackets [] denote the marks allocated to the various parts of each question.

А	C1	Total
В	C2	
	D1	
	D2	1

Please do not write in the box below

NOT TO BE REMOVED FROM THE EXAMINATION HALL /Cont'd

				Stud		
PAI	RT A TICK THE (MARKS	E BOX BY THE ANS ARE NOT DEDUCTE	WER YOU JUDGE T D FOR INCORRECT	O BE CORRECT ANSWERS)	Rounty.co	
A1	The electrostatic force between two point charges is 8 N. If the separation between these two charges is doubled, the force will be:					
	16 N	4 N	2 N	1 N	[1]	
A2	A 1 m long wire i length of the wire.	s placed in a 0.1 T If the current thro	magnetic field which ugh the wire is 1 A	ch is perpendicular to , the force on the wire	the is:	
	1.0 N	0.1 N	1.1 N	2.0 N	[1]	
A3	The electric fields $40\vec{i} - 32\vec{j}$ respective	at a point due to che vely. The electric fie	arges Q_1, Q_2, Q_3 ar ld at the same poin	e $10\vec{i} + 8\vec{j}, -20\vec{i} + 16\vec{j}$ t due to all the charge	and es is:	
	0i + 56j	$\boxed{-20i-32j}$	50i + 24j	30i - 8j	[1]	
A4	An electrical cond	uctor carries 10 cou	lombs in 5 seconds,	the current is:		
	10 amps	2 amps	\Box 0.5 amps	\Box 50 amps	[1]	
A5	The equivalent cap	pacitance of the foll	owing circuit is:			
			4μF 			
	□ 16 μF	4 μF	6 μF	$\square \frac{8}{5} \mu F$	[1]	
A6	The force acting o	n charge q moving i	n a magnetic field h	\vec{B} with a velocity \vec{v} is:		
	$\Box \ q\vec{v}\times\vec{B}$	$\Box qvB$	$\Box q \vec{v}. \vec{B}$	$\Box -qvB$	[1]	

Α7 The equivalent resistance of the following circuit is:

	Students
A14 A hot star can have low luminosity if it is:	10°CL
a red gianton the main sequencea white dwarfa protostar	[1] ·····
A15 Convection can be triggered by:	12
 radiative equilibrium increased opacity due to partially ionised hydrogen hydrostatic equilibrium mass loss 	[1]
A16 The mean free path of a photon inside a star is:	
 directly proportional to the opacity the reciprocal of the Thomson cross-section the average distance between collisions with free electrons the time for a photon to diffuse out of the star 	[1]

PART B Answer all EIGHT questions

StudentBounty.com B1Calculate the ratio of the forces due to the gravitational field and an electric field on an electron near the earth's surface. Assume that $\frac{e}{m}$ for an electron is $1.756 \times 10^{11} \text{ C kg}^{-1}$, the electric field is 10^6 V m^{-1} and the gravitational field is 9.8 m s^{-2} . [3]

B2Sketch the electric field lines for a pair of charges +2q and +q separated by [3]0.1m.

B3 A 24 μ C electric charge is placed at the centre of a cubic box of side 0.6 m. What is the electric flux through one side of the cubic box? [3]

/Cont'd

B4 During a lightning flash, 50 C of electric charge is transferred through a potential difference of 10⁶V. Calculate the electrical energy involved in this process. How long could this electrical power be used to light a 100W light bulb? [3]

B5 A $1 M_{\odot}$ star has a main sequence lifetime of 10^{10} yr. Estimate the lifetime of a $10 M_{\odot}$ star. [3]

B6 Draw a schematic Hertzsprung-Russell diagram, indicating on it the Sun's evolution. Label the axes and the location of the main evolutionary stages. [3]

/Cont'd

B7 Consider a volume of gas displaced upwards inside a star. State the density criteria under which convective instability would occur. [3]

B8 Sirius A is a main sequence star with radius $R = 1.7 R_{\odot}$ and luminosity $L = 26 L_{\odot}$. Calculate the star's effective temperature and state its approximate spectral type. [3]

PART C ANSWER ONE OUT OF TWO QUESTIONS

- StudentBounty.com C1(a) Using Coulomb's or Gauss's law derive an expression for the electric field \vec{E} and the electric potential V at a distance r from a point charge Q.
 - (b) Two identical conducting balls of mass M are hung from silk threads of length l and carry identical charges Q as shown in figure below. Assume that θ is so small that $\tan \theta \approx \sin \theta$.

i. Sketch a diagram showing the forces acting on either of the balls. [6]

ii. Show that,

$$x = \left[\frac{Q^2 l}{2\pi\epsilon_o Mg}\right]^{\frac{1}{3}}$$

where x is the equilibrium separation between the balls. [16]

C2(a) State and explain Kirchhoff's current and voltage laws for electric circuits.

[10]

(b) In the circuit diagram shown below, $R_1 = 10\Omega$, $R_2 = 12\Omega$, $R_3 = 4\Omega$, $E_1 = 4V$ and $E_2 = 8V$.

- i. calculate the values for I_1 , I_2 , and I_3 ; [16]
- ii. calculate the power dissipated in R_2 ; [2]
- [2]iii. calculate the power delivered by E_2 .

/Cont'd

www.StudentBounty.com

PART D ANSWER ONE OUT OF TWO QUESTIONS

- StudentBounty.com D1 A spherical interstellar gas cloud has a radius R, uniform density, and a total mass M.
 - (a) Using the hydrostatic equilibrium equation, show that the central pressure of the cloud is given by

$$P_{\rm c} = \frac{3G}{8\pi} \frac{M^2}{R^4}.$$
 [14]

- (b) Assuming that the cloud consists of a gas of particles of average mass \overline{m} that acts as an ideal gas, derive an expression for the central temperature of this cloud as a function of M and R. [8]
- (c) If the cloud consists of $10 M_{\odot}$ of molecular hydrogen (H₂), and has a radius of 4×10^{15} m and a temperature of 25 K, will the cloud collapse into a star? Justify your answer. [8]
- D2 (a) Show that if there are $n_{\rm e}$ electrons per unit volume, each with a scattering cross-section σ_T , then the mean free path of the photons is

$$l = \frac{1}{n_{\rm e}\sigma_T}.$$
[6]

- (b) How is the mean free path related to the opacity of the stellar material? State where in stellar interiors is this opacity mechanism dominant and why. [6]
- (c) Explain why the distance travelled, D, after N scatterings is given by

$$D^2 = Nl^2$$

and hence estimate the number of scatterings needed for a photon to diffuse out of a star of radius R. [8]

(d) Consider a star with a radius of $2R_{\odot}$ and an average density $10^5 \,\mathrm{kg \, m^{-3}}$, consisting of ionised hydrogen. Estimate the mean free path and the total diffusion time for a photon inside this star. [10]