EXAMINATION PAPER CONTAINS STUDENT'S A

Please write your 8-digit student number here:

StudentBounts.com The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level I

Thursday 27th May 2010, 13.00-15.00

PHYSICS/ASTROPHYSICS

PHY-10021

Electricity and Magnetism

Candidates should attempt ALL of PARTS A and B, and ONE guestion from PART C and ONE question from PART D.

PARTS A and B should be answered on the exam paper; PART C AND PART D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag.

PART A yields 16% of the marks, PART B yields 24%, PART C yields 30 and PART D yields 30%. You are advised to divide your time in roughly these proportions.

Figures in brackets [] denote the marks allocated to the various parts of each question.

А	C1	Total
В	C2	
	D1	
	D2	

Please do not write in the box below

NOT TO BE REMOVED FROM THE EXAMINATION HALL /Cont'd

PART A TICK THE BOX BY THE ANSWER YOU JUDGE TO BE CORR (MARKS ARE NOT DEDUCTED FOR INCORRECT ANSWERS)						
A1	The electron these two	etrostatic f ro charges	force between two j is doubled, the for	point charges is 8 N. ce will be: \Box a N	If the separation betw	weet ling
	16 N	N	4 N	2 N		
A2	A 1 m long wire is placed in a 0.1 T magnetic field which is perpendicular to the length of the wire. If the current through the wire is 1 A, the force on the wire is:					
		N	0.1 N	1.1 N	2.0 N	[1]
A3	The electric fields at a point due to charges Q_1 , Q_2 , Q_3 are $10\vec{i} + 8\vec{j}$, $-20\vec{i} + 16\vec{j}$ and $40\vec{i} - 32\vec{j}$ respectively. The electric field at the same point due to all the charges is:					
	\Box 70 \vec{i} -	$+56\vec{j}$	$\Box -20\vec{i} - 32\vec{j}$	$ \qquad \qquad$	$\Box 30\vec{i} - 8\vec{j}$	[1]
A4	An elect	rical cond	uctor carries 10 co	ulombs in 5 seconds,	the current is:	
	☐ 10 a	mps	\Box 2 amps	\Box 0.5 amps	\Box 50 amps	[1]
A5	The equ	ivalent ca	pacitance of the fol	lowing circuit is:		
				4μF 	 }	
	\Box 16 μ	εF	\Box 4 μF	\Box 6 μF	$\square \frac{8}{5} \mu F$	[1]
A6	6 The force acting on charge q moving in a magnetic field \vec{B} with a velocity \vec{v} is:					
	$\Box q\vec{v} \times$	Ξ	$\Box qvB$	$\Box q \vec{v}. \vec{B}$	$\Box -qvB$	[1]

A14	In an ac-circuit, the impedance a capacitor is 2000 Ω . If the frequence of the capacitor is:							
	2000 Ω	1000 Ω	Δ 4000 Ω	500 Ω	716			
A15	5 Magnetic flux through a loop of conducting wire is given by $\phi = 20 + 5t$ Wb. The magnitude of the induced voltage in the loop is:							
	5 V	20 V	0 V	25 V				
A16	The time-constant of an <i>RC</i> circuit is 4 seconds. If the value of the capacitance is halved, the time-constant will become:							
	4 s	8 s	2 s	□ 16 s	[1]			

PART B ANSWER ALL EIGHT QUESTIONS

StudentBounty.com Calculate the ratio of the forces due to the gravitational field and an electric B1field on an electron near the earth's surface. Assume that $\frac{e}{m}$ for an electron is $1.756 \times 10^{11} \text{ Ckg}^{-1}$, the electric field is 10^6 Vm^{-1} and the gravitational field is 9.8 ms^{-2} .

B2Sketch the electric field lines for a pair of charges +2q and +q separated by [3]0.1m.

B3A 24 μ C electric charge is placed at the centre of a cubic box of side 0.6 m. What is the electric flux through one side of the cubic box? [3]

- B4 During a lightning flash, 50 C of electric charge is transferred through tial difference of 10⁶V. Calculate the electrical energy involved in this pro-How long could this electrical power be used to light a 100W light bulb?
- B5 A conducting wire of length l travels at speed v perpendicular to both its length and to a magnetic field B. Calculate the induced emf in the wire. [3]

B6 A closed loop encircles several electrical conductors. The line integral $\oint \vec{B} \cdot d\vec{l}$ around the loop is 12.566×10^{-5} T m. Calculate the net current in the conductors. [3]

In the ac-circuit shown below, C is a variable capacitor, L is an induce a light bulb and S is a voltage supply. Explain, how the brightness of the changes as C is varied? B7

A motor draws current of 4 A (rms current) from a 250 V (rms voltage) source. B8The average power consumption is 500 W. Calculate the phase angle between the voltage and the current. [3]

/Cont'd

[3]

PART C ANSWER ONE OUT OF TWO QUESTIONS

- C1(a) Using Coulomb's or Gauss's law derive an expression for the electric field and the electric potential V at a distance r from a point charge Q.
- StudentBounty.com (b) Two similar conducting balls of mass M are hung from silk threads of length l and carry similar charges Q as shown in figure below. Assume that θ is so small that $\tan \theta$ can be replaced by its approximate equal, $\sin \theta$.

- i. Sketch a diagram showing the forces acting on either of the balls. [6]
- ii. Show that,

$$x = \left[\frac{Q^2 l}{2\pi\epsilon_o Mg}\right]^{\frac{1}{3}}$$

where x is the equilibrium separation between the balls. [16]

- C2(a) State and explain Kirchhoff's current and voltage laws for electric circuits.
 - [10]
 - (b) In the circuit diagram shown below, $R_1 = 10\Omega$, $R_2 = 12\Omega$, $R_3 = 4\Omega$, $E_1 = 4V$ and $E_2 = 8V$.

- [16]i. calculate the values for I_1 , I_2 , and I_3 ;
- ii. calculate the power dissipated in R_2 ;
- iii. calculate the power delivered by E_2 . [2]

/Cont'd

[2]

www.StudentBounty.com

PART D ANSWER ONE OUT OF TWO QUESTIONS

- D1 (a) State and explain the laws of electromagnetic induction.
- StudentBounty.com (b) The current in the infinitely long wire AB (see figure below) is $i = i_o \cos(\omega t)$.

i. calculate the magnitude of the field \vec{B} at a distance r from the wire; [4] ii. calculate the flux $d\phi$ through the narrow shaded strip; [4]iii. calculate the total flux through the loop; [8]iv. calculate the induced emf in the loop. [6]

[8]

D2(a) Explain the terms root mean square (rms) and power factor in an ac-circuit.

(b) The values of the components in a series LCR circuit are: $R = 400\Omega, L = 50mH, C = 0.5\mu F.$ The input voltage is 200V(rms) and the angular frequency $\omega = 10^4 rad \ s^{-1}$. i. calculate the total impedance of the circuit; [6]ii. calculate the *rms* current in the circuit; [5]iii. calculate the phase angle between the voltage and the current in the circuit; [5]

iv. calculate the power dissipated in R and in C. [6]

www.StudentBounty.com