EXAMINATION PAPER CONTAINS STUDENT'S

Please write your 8-digit student number here:

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level I

Thursday $27^{\text {th }}$ May 2010, 13.00-15.00

PHYSICS/ASTROPHYSICS

PHY-10021

Electricity and Magnetism

Candidates should attempt ALL of PARTS A and B, and ONE question from PART C and ONE question from PART D.

PARTS A and B should be answered on the exam paper; PART C AND PART D should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag.
PART A yields 16% of the marks, PART B yields 24%, PART C yields 30 and PART D yields 30%. You are advised to divide your time in roughly these proportions.
Figures in brackets [] denote the marks allocated to the various parts of each question.
Please do not write in the box below

A		C1		
B		C2		
		D1		
		D2		

A1 The electrostatic force between two point charges is 8 N . If the separation betwee these two charges is doubled, the force will be:
16 N \square 4 N \square 2 N1 N

A2 A 1 m long wire is placed in a 0.1 T magnetic field which is perpendicular to the length of the wire. If the current through the wire is 1 A , the force on the wire is:1.0 N \square 0.1 N
1.1 N2.0 N
[1]
A3 The electric fields at a point due to charges Q_{1}, Q_{2}, Q_{3} are $10 \vec{i}+8 \vec{j},-20 \vec{i}+16 \vec{j}$ and $40 \vec{i}-32 \vec{j}$ respectively. The electric field at the same point due to all the charges is:

$$
\begin{equation*}
70 \vec{i}+56 \vec{j} \tag{1}
\end{equation*}
$$

$$
\square-20 \vec{i}-32 \vec{j}
$$

\square $50 \vec{i}+24 \vec{j}$
$30 \vec{i}-8 \vec{j}$
A4 An electrical conductor carries 10 coulombs in 5 seconds, the current is:
$\square 10 \mathrm{amps}$
$\square 2 \mathrm{amps}$
$\square 0.5 \mathrm{amps}$
$\square 50 \mathrm{amps}$

A5 The equivalent capacitance of the following circuit is:

$\square 16 \mu \mathrm{~F}$ \square $4 \mu \mathrm{~F}$
$\square 6 \mu \mathrm{~F}$
$\square \frac{8}{5} \mu \mathrm{~F}$

A6 The force acting on charge q moving in a magnetic field \vec{B} with a velocity \vec{v} is:
$\square q \vec{v} \times \vec{B}$ \square $q v B$ \square $q \vec{v} \cdot \vec{B}$
$\square-q v B$

A7 The equivalent resistance of the following circuit is:

$\square 2 \Omega$
$\square 5 \Omega$
$\square 1.25 \Omega$ \square 3Ω

A8 The density of the charge carriers in an electrical conductor is $q \mathrm{Cm}^{-3}$ and the drift velocity is $v \mathrm{~ms}^{-1}$. If the area of cross section is $A \mathrm{~m}^{2}$, the current flow through the conductor is given by:
$\square \frac{q}{v}$
$\square \frac{q}{v A}$
$\square \frac{v}{q}$
$\square v A q$

A9 A magnetic loop has an area A and carries a current I. The magnitude of the magnetic dipole moment is:I A \square $\square \frac{I}{A}$ \square $I^{2} A$

A10 The force per unit length between two parallel wires carrying identical current in the same direction is 20 N . If the separation of these wires is halved, the force per unit length is:
\square 20N
$\square 10 \mathrm{~N}$
$\square 5 \mathrm{~N}$
$\square 40 \mathrm{~N}$
A11 A rectangular loop of a conducting wire with area A is in a magnetic field B. The plane of the loop is perpendicular to the magnetic field. If the loop is rotated by 180°, magnetic flux through the loop changes by:
$\square B A$
$\square \frac{B A}{2}$
$\square 2 B A$
$\square 0$
[1]
A12 In an ac-circuit, the phase difference between the voltage and the current is 60°. The power factor is:
$\square 0.87$
$\square 0.50$
$\square 1.0$
$\square 0$
[1]
A13 In an ac-circuit, the peak input voltage is 230 V . The equivalent root mean square voltage (rms) is:
$\square 162.6 \mathrm{~V} \quad \square 230.0 \mathrm{~V} \quad \square 325.3 \mathrm{~V} \quad \square 115 \mathrm{~V}$

A14 In an ac-circuit, the impedance a capacitor is 2000Ω. If the frequent the impedance of the capacitor is:
$\square 2000 \Omega$ \square
A15 Magnetic flux through a loop of conducting wire is given by $\phi=20+5 t \mathrm{~Wb}$. Th magnitude of the induced voltage in the loop is:5 V
20 V \square 0 V
25 V
A16 The time-constant of an $R C$ circuit is 4 seconds. If the value of the capacitance is halved, the time-constant will become:
4 s8 s
$\square 2 \mathrm{~s}$16 s

B1 Calculate the ratio of the forces due to the gravitational field and an electric field on an electron near the earth's surface. Assume that $\frac{e}{m}$ for an electron is $1.756 \times 10^{11} \mathrm{Ckg}^{-1}$, the electric field is $10^{6} \mathrm{Vm}^{-1}$ and the gravitational field is $9.8 \mathrm{~ms}^{-2}$.

B2 Sketch the electric field lines for a pair of charges $+2 q$ and $+q$ separated by 0.1 m .

B3 A $24 \mu \mathrm{C}$ electric charge is placed at the centre of a cubic box of side 0.6 m . What is the electric flux through one side of the cubic box?

B4 During a lightning flash, 50 C of electric charge is transferred through tial difference of $10^{6} \mathrm{~V}$. Calculate the electrical energy involved in this pro How long could this electrical power be used to light a 100W light bulb?

B5 A conducting wire of length l travels at speed v perpendicular to both its length and to a magnetic field B. Calculate the induced emf in the wire. [3]

B6 A closed loop encircles several electrical conductors. The line integral $\oint \vec{B}$. $\overrightarrow{d l}$ around the loop is $12.566 \times 10^{-5} \mathrm{~T} \mathrm{~m}$. Calculate the net current in the conductors.
$B 7$ In the ac-circuit shown below, C is a variable capacitor, L is an induc a light bulb and S is a voltage supply. Explain, how the brightness of the changes as C is varied?

[3]

B8 A motor draws current of 4 A ($r m s$ current) from a 250 V (rms voltage) source. The average power consumption is 500 W . Calculate the phase angle between the voltage and the current.

C1 (a) Using Coulomb's or Gauss's law derive an expression for the electric field and the electric potential V at a distance r from a point charge Q.
(b) Two similar conducting balls of mass M are hung from silk threads of length l and carry similar charges Q as shown in figure below. Assume that θ is so small that $\tan \theta$ can be replaced by its approximate equal, $\sin \theta$.

i. Sketch a diagram showing the forces acting on either of the balls.
ii. Show that,

$$
x=\left[\frac{Q^{2} l}{2 \pi \epsilon_{o} M g}\right]^{\frac{1}{3}}
$$

where x is the equilibrium separation between the balls.

C2 (a) State and explain Kirchhoff's current and voltage laws for electric circuits.
(b) In the circuit diagram shown below, $\mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=12 \Omega, \mathrm{R}_{3}=4 \Omega, \mathrm{E}_{1}=4 \mathrm{~V}$ and $\mathrm{E}_{2}=8 \mathrm{~V}$.

i. calculate the values for $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3};
ii. calculate the power dissipated in R_{2};
iii. calculate the power delivered by E_{2}.

D1 (a) State and explain the laws of electromagnetic induction.
(b) The current in the infinitely long wire AB (see figure below) is $i=i_{o} \cos (\omega t)$.

i. calculate the magnitude of the field \vec{B} at a distance r from the wire; [4]
ii. calculate the flux $d \phi$ through the narrow shaded strip;
iii. calculate the total flux through the loop;
iv. calculate the induced emf in the loop.

D2 (a) Explain the terms root mean square (rms) and power factor in an ac-circuit.
(b) The values of the components in a series LCR circuit are:
$R=400 \Omega, L=50 \mathrm{mH}, C=0.5 \mu F$.
The input voltage is $200 \mathrm{~V}(\mathrm{rms})$ and the angular frequency $\omega=10^{4} \mathrm{rad} \mathrm{s}{ }^{-1}$.
i. calculate the total impedance of the circuit;
ii. calculate the $r m s$ current in the circuit;
iii. calculate the phase angle between the voltage and the current in the circuit;
iv. calculate the power dissipated in R and in C .

