EXAMINATION PAPER CONTAINS STUDENT'S ANSM

Please write your 8-digit student number here:

The Handbook of Mathematics, Physics and Astronomy Data is provided

KEELE UNIVERSITY

EXAMINATIONS, 2009/10

Level I
Tuesday $18^{\text {th }}$ May 2010, 13.00-15.00

PHYSICS/ASTROPHYSICS
PHY-10020

OSCILLATIONS AND WAVES

Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered on the exam paper; PART C should be answered in the examination booklet which should be attached to the exam paper at the end of the exam with a treasury tag.
PART A yields 16% of the marks, PART B yields 24%, PART C yields 60%. You are advised to divide your time in roughly these proportions.
Figures in brackets [] denote the marks allocated to the various parts of each question.
Please do not write in the box below

A		C1		Total
B		C2		
		C3		
		C4		

PART A Tick the box by the answer you Judge to be correct (MARKS ARE NOT DEDUCTED FOR INCORRECT ANSWERS)

A1 The displacement and acceleration of a particle in simple harmonic motion are
$\square 90^{\circ}$ out of phase180° out of phase
270° out of phase
$\square 360^{\circ}$ out of phase

A2 The period of a simple pendulum with length L is
$\square T=\sqrt{g / L}$
$\square T=\sqrt{L / g}$
$\square T=2 \pi \sqrt{g / L} \quad \square$
$T=2 \pi \sqrt{L / g}$

A3 A particle is in simple harmonic motion with amplitude A. Its kinetic energy is a maximum at
$\square x=0$
$\square x= \pm A / 2$
$\square x= \pm A / \sqrt{2}$ \square $x= \pm A$

A4 A block of mass 100 g on a spring with $k=0.4 \mathrm{~N} \mathrm{~m}^{-1}$ undergoes simple harmonic motion with an amplitude of 30 cm . Its total mechanical energy is
$\square 0.009 \mathrm{~J}$ \square 0.018 J
$\square 0.036 \mathrm{~J}$ \square 0.180 J
[1]
A5 An oscillator with mass 200 g and natural angular frequency $3 \mathrm{~s}^{-1}$ is damped by a force $-\gamma \dot{x}$, in which $\gamma=1.8 \mathrm{~kg} \mathrm{~s}^{-1}$. This system is
\square overdamped underdampedcritically damped
\square resonantly damped

A6 The period of an underdamped oscillator is
\square equal to
\square shorter than $\quad \square$ longer thanindependent of its natural period.

A7 In the steady state of a forced harmonic oscillator, the time-averaged mechanical energy

\square decays linearlydecays exponentially \square grows exponentially

A8 A harmonic oscillator with natural angular frequency ω_{0} is driven by an external harmonic force with angular frequency ω_{e}. The power absorbed by the oscillator in its steady state is maximized if
$\square \omega_{e}=0$
$\square \omega_{e} \ll \omega_{0}$
$\square \omega_{e}=\omega_{0}$
$\square \omega_{e} \gg \omega_{0}$

A9 Resistance in an electrical circuit is analogous to the

\square driving force
\square natural restoring force
of a mechanical oscillator.
A10 A wave described by $y(x, t)=0.02 e^{-(2 x+5 t)^{2} / 2}$ (with x and y in metres, and t in seconds) propagates at
$\square 5 \mathrm{~m} \mathrm{~s}^{-1}$ to the right$2.5 \mathrm{~m} \mathrm{~s}^{-1}$ to the right
$\square 5 \mathrm{~m} \mathrm{~s}^{-1}$ to the left
$2.5 \mathrm{~m} \mathrm{~s}^{-1}$ to the left
A11 A transverse wave travels at a speed of $160 \mathrm{~m} \mathrm{~s}^{-1}$ along a string with linear mass density mass $0.005 \mathrm{~kg} \mathrm{~m}^{-1}$. The tension in the string is
$\square 0.004 \mathrm{~N}$
$\square 0.8 \mathrm{~N}$
$\square 128 \mathrm{~N}$ $32,000 \mathrm{~N}$

A12 In the wave $y(x, t)=0.03 \sin (4 x-8 t)(x$ and y in metres and t in seconds), the particle acceleration at $x=t=0$ is
$\square-1.92 \mathrm{~m} \mathrm{~s}^{-2}$ \square $1.92 \mathrm{~m} \mathrm{~s}^{-2}$
$\square-0.24 \mathrm{~m} \mathrm{~s}^{-2}$0

A13 Two travelling harmonic waves combine to produce the standing wave $y(x, t)=$ $0.05 \sin (12 x) \cos (60 t)$ (for x and y in metres, and t in seconds). The speed of the travelling waves is
$\square v=0.2 \mathrm{~m} \mathrm{~s}^{-1} \quad \square v=0.6 \mathrm{~m} \mathrm{~s}^{-1} \quad \square v=3 \mathrm{~m} \mathrm{~s}^{-1} \quad \square v=5 \mathrm{~m} \mathrm{~s}^{-1}$
A14 A string of length 3 m vibrates in its fourth harmonic with both ends fixed. The wavelength of this standing wave is
$\square 0.75 \mathrm{~m}$
$\square 1 \mathrm{~m}$
$\square 1.5 \mathrm{~m}$
$\square 2 \mathrm{~m}$

A15 Two waves with the same intensity I_{0} interfere at a point P in space. The maximum possible intensity of the total wave at P is
$\square I_{0} / 2$
$\square I_{0}$
$\square 2 I_{0}$
$\square 4 I_{0}$

A16 The condition for minima in the intensity pattern from single-slit diffraction is
$\square a \sin \theta=M \lambda, \quad M=0, \pm 1, \pm 2, \ldots$
$\square a \sin \theta=M \lambda, \quad M= \pm 1, \pm 2, \ldots$
$\square a \sin \theta=\left(M+\frac{1}{2}\right) \lambda, \quad M=0, \pm 1, \pm 2, \ldots$
$\square a \sin \theta=\left(M+\frac{1}{2}\right) \lambda, \quad M= \pm 1, \pm 2, \ldots$

PART B Answer all EIGHT questions

B1 A block of mass 40 g on a spring with $k=16 \mathrm{~N}$ undergoes simple harmonic motion with amplitude 5 cm . At time $t=0$ it is displaced by +3 cm from its equilibrium position. What is the value of the phase constant?

B2 An object of mass 0.3 kg is in simple harmonic motion about $x=0$, with an amplitude of 4 cm . Its total mechanical energy is $E_{\text {tot }}=0.054 \mathrm{~J}$. Find the period of the oscillation.

B3 A simple pendulum consists of a bob of mass $m=150 \mathrm{~g}$ at the end of string with length $L=30 \mathrm{~cm}$. The force of air resistance on the bob is $F_{\text {air }}=-\gamma \dot{s}$, where \dot{s} is the linear velocity and $\gamma=0.03 \mathrm{~kg} \mathrm{~s}^{-1}$. Determine whether the pendulum is overdamped, critically damped, or underdamped. (The acceleration due to gravity is $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$.)

B4 Briefly explain what is meant by the transient stage and the steady state in the motion of a forced harmonic oscillator.

B5 Show that the function

$$
y(x, t)=A e^{B x-C t}
$$

is a solution of the one-dimensional wave equation $(A, B$, and C are arbitrary constants).

B6 The displacement s of molecules in a sound wave travelling in the x direction is given by

$$
s(x, t)=7 \times 10^{-8} \sin (5.3 x-1800 t)
$$

for x and s in metres and t in seconds. Calculate the wave speed and the maximum particle speed.

B7 A string of length 66 cm with both ends fixed vibrates in its third harmon with a frequency of 784 Hz . What is the speed of travelling waves on this string?

B8 Two identical speakers at positions $x=0$ and $x=300 \mathrm{~m}$ face each other and emit sound waves in phase, each with intensity $I_{0}=0.01 \mathrm{~W} \mathrm{~m}^{-2}$ and wavelength 4 m . What is the volume at the position $x=151 \mathrm{~m}$ between the two speakers?

PART C Answer TWO out of FOUR questions

C1 (a) A particle of mass m undergoes simple harmonic motion about $x=0$ with angular frequency ω and amplitude A.
i. Show that the potential energy of the particle is $U=\frac{1}{2} m \omega^{2} x^{2}$.
ii. Use the general solution for $x(t)$ and the velocity $\dot{x}(t)$ to show that the total mechanical energy is $E_{\text {tot }}=\frac{1}{2} m \omega^{2} A^{2}$.
iii. Sketch the kinetic and potential energies as functions of position. Identify the points x where kinetic energy equals potential energy.
(b) A block of mass m hanging from a spring with constant k has a total (spring plus gravitational) potential energy of

$$
U(y)=\frac{1}{2} k y^{2}+m g y
$$

where $y=0$ is the position at which the spring is unstretched.
i. Find the position y_{eq} at which U is a minimum. What is the net force on the block at this position?
ii. Using the formula $\omega^{2}=(1 / m)\left(d^{2} U / d y^{2}\right)_{y_{\text {eq }}}$, find the angular frequency and the period of simple harmonic motion of this block.

C2 (a) The equation of motion of a damped harmonic oscillator is

$$
m \ddot{x}+\gamma \dot{x}+m \omega_{0}^{2} x=0 .
$$

State the condition that determines whether an oscillator is underdamped, critically damped, or overdamped. Sketch a representative curve of displacement versus time for each case, indicating clearly all main physical features of the motion.
(b) An oscillator driven by an external harmonic force with a tunable angular frequency ω_{e} has the equation of motion

$$
\begin{equation*}
m \ddot{x}+\gamma \dot{x}+m \omega_{0}^{2} x=F_{0} \cos \left(\omega_{e} t\right) . \tag{2}
\end{equation*}
$$

i. What value of ω_{e} results in velocity resonance?
ii. Assuming that the steady-state displacement at velocity resonance is given by $x(t)=A \sin \left(\omega_{0} t\right)$, use the equation of motion to find A in terms of γ, ω_{0}, and F_{0}.
iii. Show that the sum of the power input by the driving force, plus the power dissipated by the damping force, is exactly 0 in the steady state at velocity resonance.

C3 (a) A travelling wave has the equation

$$
y(x, t)=A \sin \left(k x-\omega t+\phi_{0}\right) .
$$

i. Show that $k=2 \pi / \lambda$ implies $y(x+\lambda, t)=y(x, t)$ for any x and t.
ii. Show that $y(x, t)$ satisfies the one-dimensional wave equation, and thus find the wave speed in terms of ω and k.
iii. Show that there is simple harmonic oscillation about $y=0$, with angular frequency ω, at any position x in the wave.
(b) A standing wave is given by

$$
y(x, t)=2 A \sin (k x) \cos (\omega t)
$$

Derive the allowed wavelengths λ_{n} if the wave is confined to the region $0 \leq$ $x \leq L$ and both endpoints $x=0$ and $x=L$ are nodes. Sketch the wave functions of the first three harmonics at $t=0$, with the positions of all nodes and antinodes clearly marked.
(c) A quantum-mechanical particle of mass m is trapped in an infinite square well of width L. Obtain expressions for the momenta p_{n} and the kinetic energies E_{n} associated with the allowed de Broglie wavelengths of the particle.

C4 (a) Two sources, S_{1} and S_{2}, emit harmonic waves in phase with the same amplitude, frequency, and wavelength. The two waves interfere at a point P, which is located a distance x_{1} from source S_{1} and a distance x_{2} from source S_{2}. Show that the total wave at P is

$$
\begin{equation*}
y_{\mathrm{tot}}(P)=2 A \cos \left[\frac{k\left(x_{1}-x_{2}\right)}{2}\right] \sin \left[\frac{k\left(x_{1}+x_{2}\right)}{2}-\omega t+\phi_{0}\right] \tag{6}
\end{equation*}
$$

(b) Use the expression for $y_{\text {tot }}(P)$ from part (a) to derive relations between the path difference $\left(x_{1}-x_{2}\right)$ and the wavelength λ for the case that the interference at P is
i. destructive.
ii. constructive.
(c) With the aid of a diagram, show that the path difference from two slits to a point on a distant screen in a Young's experiment is $d \sin \theta$ (define d and θ on the diagram). Hence, infer the standard expressions for the locations of bright and dark fringes in the intensity pattern on the screen.

