

KEELE UNIVERSITY

DEGREE EXAMINATIONS, 2009 Level 3 (PRINCIPAL COURSE) 20th January 2009, 9:30 - 11:30 PHYSICS/ASTROPHYSICS PHY-30023

Particles, accelerators and reactor physics

Candidates should attempt to answer THREE questions

Tables of physical and mathematical data may be obtained from the invigilator.

/Cont'd

www.StudentBounty.com

- StudentBounty.com 1. (a) Discuss the conservation of baryon and lepton numbers, strangeness, charm and isospin for particles interacting via each of the electromagnetic, strong nuclear and weak nuclear interactions. [20]
 - (b) Discuss the conservation of strangeness and lepton numbers for
 - i. the decay of the strangeness S = 0, ϕ meson to the S = -1, K^- meson and its antiparticle:

$$\phi \to K^- + K^+ \tag{10}$$

ii. the decay of the K^+ particle:

$$K^+ \to \mu^+ + \nu_\mu \tag{10}$$

(c) The K^+ has zero charm and does not contain top or bottom quarks. Determine i. its quark structure and [10]

- [5]ii. its 3 axis component of isospin T_3 .
- (d) State and explain which field particle is involved in the decay of the K^+ in part (b)ii. $\left[5\right]$
- (e) Write down and illustrate charge conservation, for each of the individual quarks in this K^+ decay. |20|
- (f) Discuss why particle physics experiments tend to produce an abundance of mesons, but free quarks are not observed. [20]

/Cont'd

- StudentBounty.com 2.(a) State the fundamental interactions of the Standard Model and compare the masses, charge numbers and spin quantum numbers of the particles that mediate these interactions. [15]
 - (b) The total energy E_{CM} , in eV, in the centre of mass frame of reference for colliding particles labelled A and B is given by

$$E_{CM}^2 = m_A^2 + m_B^2 + 2E_A E_B - 2\underline{p}_A \cdot \underline{p}_B$$

where m is rest mass in eV/c^2 , p is momentum in eV/c and E is total energy in eV. Show that for equal speed and rest mass particles in a high energy head on collision, this simplifies to a good approximation to

$$E_{CM} = 2E_A$$
^[20]

- (c) The mass of a Z^{o} boson is $91.2 \,\mathrm{GeV/c^2}$. Determine the minimum energy of each colliding proton beam in the LHC in order for Higgs/anti-Higgs pairs to be created assuming head on collisions, if the Higgs particle is 1.8 times the mass of a Z^o . [15]
- (d) State the key advantages and disadvantages of cyclic and electrostatic accelerators. [10]
- (e) Describe and explain the key features of a cyclic particle collider for use in particle physics studies. [40]

 $\mathbf{2}$

	3	StudentBount
3.	 (a) Describe the key components and the operation of a Van de Grawith a gas discharge source. 	aff accelerator [25]
	(b) Discuss the limitations of a Van de Graaff accelerator and the tandem accelerator has in comparison.	e advantages a [20]
	(c) A particular Van de Graaff accelerator and a single stripping ta ator both operate with a voltage of $10 \mathrm{MV}$. Calculate the energ	andem acceler- ies of;
	i. protons accelerated by the Van de Graaff,	[5]
	ii. protons accelerated by the tandem,	[5]
	iii. α particles accelerated by the Van de Graaff,	[5]
	iv. α particles accelerated by the tandem.	[5]
	(d) A nucleus of energy 60 MeV emerges from the tandem of par electrons are removed by the stripper. Determine the atomic nucleus.	rt (c) after all number of the [10]
	(e) 12 C nuclei are accelerated by the tandem accelerator of part (c)	
	i. Calculate the maximum energy of ¹² C ions produced.	[5]

ii. Explain why the chosen ¹²C beam extracted from the accelerator may not [20]have the maximum energy of part (e)i.

		4	ontBounty.com
4.	(a)	Define the <i>mean free path</i> of a neutron.	[5]
	(b)	Explain why neutrons are much more penetrating than protons or pho- when interacting with matter.	otons [20]
	(c)	Name and define the four categories of neutron energy.	[10]
	(d)	Contrast what is meant by $moderation$ and $thermalisation$ of neutrons reactor.	in a [10]
	(e)	Compare the following aspects of thermal and fast reactors:	
		i. The energy of neutrons used for fission.	[5]
		ii. Moderation requirements.	[10]
		iii. Cooling requirements.	[10]
	(f)	Explain the process of resonance loss in a reactor, how this affects neutron and what is meant by <i>resonance escape probability</i> .	flux [10]
	(g)	Calculate the reaction rate for a flux of $10^{14} \text{ m}^{-2} \text{s}^{-1}$, 66 eV neutrons particulate through 1g of ²³⁸ U, for which the neutron capture cross section is 2×10^{-2} .	5 m^2 . [20]

/Cont'd

- StudentBounty.com 5. (a) Explain the sources of n, β and γ radioactivity in a nuclear reactor.
 - (b) Explain the difference between the *shielding* and the *containment vessel* in a nuclear reactor. [10]
 - (c) Describe what is meant by a radiative capture reaction and write down the equation for radiative capture of a neutron by 12 C. [10]
 - (d) Describe and explain the purpose of control rods in a nuclear reactor and why they are lowered into a reactor from above. [15]
 - (e) The reaction rates, measured for thermal neutron capture for the same neutron flux of $2 \times 10^{14} \,\mathrm{m}^{-2} \mathrm{s}^{-1}$ and for the same number of 12 C and 11 B atoms, are found to be $9 \times 10^7 \,\mathrm{s}^{-1}$ and $1.52 \times 10^{13} \,\mathrm{s}^{-1}$ respectively. The thermal neutron radiative capture section for ${}^{12}C$ is 4.5 mb. Calculate
 - i. the thermal neutron radiative capture cross section for ¹¹B and [15]
 - ii. the reaction rate for the ¹¹B if the neutron flux is increased to $10^{15} \text{ m}^{-2} \text{s}^{-1}$.

(f) Thermal neutron radiative capture cross sections for many materials are typically a few mb, as in the case of ¹²C. Discuss the value of the cross section obtained in part (e)i in relation to part (d). [10]

5