

KEELE UNIVERSITY

DEGREE EXAMINATIONS, 2009

Level 2 (PRINCIPAL COURSE)

Tuesday 26th May 2009, 9:30 - 11:30

PHYSICS

PHY-20009

Nuclear and particle physics

Candidates should attempt to answer FOUR questions.

Tables of physical and mathematical data may be obtained from the invigilator.

/Cont'd

www.StudentBounty.com

- StudentBounts.com (a) Describe the charge numbers, strangeness S, charm C, and relative mass of 1. the 6 quarks.
 - (b) Deduce the quark structure of the following mesons, none of which contain a top quark:
 - i. K^+ ; S = 1, C = 0, mass=495 MeV/c², [10]
 - ii. D^+ ; S = 0, C = 1, mass=1866 MeV/c², [10]
 - iii. F^+ ; S = 1, C = 1, mass=1971 MeV/c², [10]
 - iv. B^+ ; S = 0, C = 0, mass=5271 MeV/c². [10]
 - (c) The K^+ can be produced via the strong interaction:

$$\pi^+ + n \to \Lambda^o + K^+$$

- i. Discuss the conservation of baryon number B, strangeness and charm in this reaction and state the values of these quantities for all particles involved. |20|
- ii. Assuming no top or bottom quarks are involved deduce, with explanation, the quark structure of the Λ^{o} . [20]
- 2. (a) Explain which feature of the strong nuclear force results in stable light nuclei tending to have equal atomic Z, and neutron N, numbers, so $N \approx Z$. [10]
 - (b) Explain why N > Z for large stable nuclei. [10]
 - (c) Describe the spin dependence of the nuclear force and therefore explain why stable ²H exists but not ²He or a nucleus of two neutrons. [25]
 - (d) Explain why an α particle has spin zero. [5]
 - (e) The ground states of the ${}^{2}H$ and the ${}^{6}Li$ nuclei have the same spin quantum number, 1. Explain this with reference to parts (c) and (d). [10]
 - (f) The lowest energy shell model state is $1s_{1/2}$ and the next is $1p_{3/2}$. Draw simple shell model diagrams for
 - i. ³H [20]
 - ii. ⁷Li [20]

and deduce the spin-parity for the ground state in each case.

/Cont'd

www.StudentBounty.com

- StudentBounty.com 3. (a) Describe the contributions to the total angular momentum quantum number of a nucleon within a nucleus and discuss the values this can take.
 - (b) Explain how the ground state spin quantum numbers result from the angular momentum of individual nucleons for
 - i. nuclei with even atomic and neutron numbers and [10]
 - ii. nuclei with an odd mass number. [15]
 - (c) Describe why a collective rotational model rather than a shell model is needed to describe the energies of the lowest 2^+ states in even-even nuclei in the mass number A region 150 < A < 190 and A > 230. [15]
 - (d) The rotational energy for a state of spin quantum number I is given by

$$E_I = \frac{I(I+1)\hbar^2}{2\mathcal{I}}$$

for moment of inertia \mathcal{I} . Use the 76.5 keV energy of the lowest 2^+ state in the even-even nucleus ¹⁷⁴Yb to calculate the moment of inertia for this nucleus.[15]

(e) State and explain the multipolarity of the γ ray arising from the de-excitation of the state of part (d) and whether it is electric or magnetic. [25]

StudentBounty.com 4. (a) Show that α decay produces an α particle with a kinetic energy T_{α} such that

$$T_{\alpha} = \frac{Q}{1 + \frac{m_{\alpha}}{m_D}}$$

where Q is the total energy release of the decay and m_{α} and m_D are the masses of the α particle and daughter nucleus respectively. [20]

(b) Using the information below, calculate the energy of α particles emitted in the α decay of ²²⁴Ra to the ground state of the daughter nucleus. [25]

	$u (1u=931.5 \mathrm{MeV/c^2})$
$^{4}\mathrm{He}$	4.002603
220 Rn	220.011384
224 Ra	224.020202

- i. Approximately 95% of $^{224}\mathrm{Ra}\:\alpha$ decays populate the $^{220}\mathrm{Rn}$ ground state and (c) approximately 5% populate the first excited state, with small fractional percentages populating higher energy states. Explain this. [25]
 - ii. Describe other factors which could potentially affect which states in the daughter are most likely to be populated. [30]

/Cont'd

- StudentBounty.com 5. (a) For the following reactions, replace the question mark with the appropriate nucleus or particle:
 - i. ${}^{12}C({}^{4}He, {}^{3}He)?$ $\left[5\right]$ ii. 7 Li(p,?)⁴He [5]iii. ²⁰⁸Pb(?,²³Na)²⁰⁸Pb [5]iv. $?(\alpha,\alpha n)^8$ Be [5]
 - (b) Using the information below, calculate the Q value for the $^{12}\mathrm{C}(^{12}\mathrm{C},^{11}\mathrm{C})^{13}\mathrm{C}$ reaction. [20]

	$u (1u = 931.5 \mathrm{MeV/c^2})$
$^{11}\mathrm{C}$	11.01143
$^{12}\mathrm{C}$	12.00000
$^{13}\mathrm{C}$	13.00335

(c) In the laboratory frame, where a projectile of mass m_a and kinetic energy T_a is incident on a stationary target nucleus, the ejectile kinetic energy T_b at angle θ_b may be determined from

$$\sqrt{T_b} = \frac{F \pm \sqrt{F^2 + (m_Y + m_b)[m_Y Q + (m_Y - m_a)T_a]}}{m_Y + m_b}$$

where

$$F = \cos\theta_b \sqrt{m_a m_b T_a}$$

 m_b and m_Y are the masses of the ejectile and residual nucleus respectively and Q is the reaction Q value. For the reaction of part (b):

- i. Define and calculate the threshold energy. [40]
- ii. Determine the range of projectile energies for which there are two possible ejectile energies. [20]

/Cont'd

- StudentBounty.com 6. (a) State what is meant by neutron induced fission, explaining the two stages by which it occurs.
 - (b) A plot of number of fragments versus mass number, for thermal neutron induced fission on ²³⁵U shows a broad peak around mass number 138. Assume that on average each fission produces one more neutron. Describe and explain another broad peak in the plot. [15]
 - (c) Show that the ratio of the two fission fragment kinetic energies is approximately inversely proportional to the ratio of their masses, stating any approximations made. [25]
 - (d) Using the information below, calculate the Q value for the fission reaction

$${}^{235}\text{U} + n \rightarrow {}^{138}\text{Xe} + {}^{96}\text{Sr} + 2n$$

$$\text{[15]}$$

$$\text{u (1u=931.5 MeV/c^2)}$$

$$\text{n} \qquad 1.008665$$

$${}^{96}\text{Sr} \qquad 95.921650$$

$${}^{138}\text{Xe} \qquad 137.913989$$

$${}^{235}\text{U} \qquad 235.043924$$

(e) Estimate the kinetic energy of;