KEELE UNIVERSITY

LEVEL 1 EXAMINATIONS, 2009
Level 1 (PRINCIPAL COURSE)
FRIDAY 16TH JANUARY 2009, 16.00-18.00

PHYSICS/ASTROPHYSICS

MODULE PHY-10011

NATURE OF MATTER

Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered on the exam paper; PART C should be answered in an answer book which should be attached to the exam paper at the end of the exam with a treasury tag.

PART A yields 16% of the marks, PART B yields 24%, PART C yields 60%. You are advised to divide your time in roughly these proportions.

Figures in brackets [] denote the marks allocated to the various parts of each question. Tables of physical and mathematical data may be obtained from the invigilator.

Registration Number

A		C1		Total
B		C2		
		C3		
		C4		

PART A Tick the box by the answer you judge to be correct
(MARKS ARE NOT DEDUCTED FOR INCORRECT ANSWERS).

A1 The absolute temperature of an ideal gas is a measure of
\square the mean molecular mass of the molecules in the gas
\square the average kinetic energy of the molecules in the gas
\square the mean velocity of the molecules in the gas
the specific heat of the gas
A2 Heat is added to a gas, which is kept at constant volume. The gas
\square does work on its surroundings
\square does no work on its surroundings
\square has work done on it by the surroundings
\square stays at the same temperature as its surroundings
A3 If a system undergoes an isothermal change then
its temperature rises at a constant rate
there is no exchange of energy with the surroundings
no work is done on or by the system
\square the temperature of the system stays constant
A4 The molecules in 1 kg -mole of an ideal diatomic gas rotate but do not vibrate. The internal energy of the gas, according to the classical Equipartition Theorem, is
$\square \frac{1}{2} R T$
$\square \frac{3}{2} R T$
$\square \frac{5}{2} R T$
$\square \frac{7}{2} R T$

A5 An isolated system is taken very slowly from an initial state to a final state. During this process, an amount of heat Q enters the system, and work W is done by the system. What other property of the system changes during this process?
\square chemical composition
\square mass
\square temperature
\square number of moles

A6 The Kinetic Theory of gases works best fordiatomic gases
\square gases just above their liquefaction point
\square gases at low densities
gases at very high densities
A7 On a phase diagram, the triple point describes the point at which
\square three different gases can co-exist independently in a gas mixture
all three phases of a substance (gas, liquid, solid) can co-exist
\square tri-atomic gases (such as CO_{2}) are found
a solid can exist in three different crystalline forms
A8 Which of the following is true for the molar specific heat at constant pressure, C_{p}, and the molar specific heat at constant volume, C_{v}, of a monatomic gas:
$\square C_{\mathrm{p}}$ is always greater than C_{v}
$\square C_{\mathrm{p}}$ is always the same as C_{v}
$\square C_{\mathrm{p}}$ is sometimes less than, sometimes greater than, C_{v}
$\square C_{\mathrm{p}}$ is always less than C_{v}
A9 Hydrogen atoms in the interstellar gas display
\square translational motion only
\square translational and rotational motion
\square translational and vibrational motion
\square translational, rotational and vibrational motion
A10 The energy of a photon is, in the usual notation,

$\square h p$
$\square h / p$
$\square p / h$
A11 ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ are both isotopes of carbon because they
\square contain the same number of neutrons in the nucleus
\square contain the same number of particles in the nucleus
\square contain the same number of protons in the nucleus contain the same number of nucleons in the nucleus

A12 The binding energy of a valence (outer) electron in an atom is typically
\square a few eV
\square a few keV
\square a few MeV
\square a few J

A13 Atomic number Z, atomic mass number A and neutron number N are related by

$$
\begin{align*}
& \square A=Z-N \\
& \square A=Z+N \\
& \square A=Z+N+2 \\
& \square Z=N-A \tag{1}
\end{align*}
$$

A14 The 'dimensions' of an atom are typically
$\square \quad 10^{-15} \mathrm{~m}$
$\square \quad 10^{-10} \mathrm{~m}$
$\square \quad 10^{-18} \mathrm{~m}$
$\square \quad 10^{-6} \mathrm{~m}$

A15 Classical physics fails to explain the photoelectric effect because the measured kinetic energy of the emitted electrons
\square depends on the intensity of the incident light
\square depends on the frequency of the incident light
\square does not depend on the properties of the incident light
\square depends on the nature of the surface
A16 Which of the following indicate the photon (i.e. 'particle') nature of electromagnetic radiation?
\square interference
\square the Compton effect
\square constancy of speed in any inertial reference frame
\square diffraction

PART B Answer all Eight questions

B1 How many ${ }^{4} \mathrm{He}$ atoms are there in a vessel that contains 20 g of ${ }^{4} \mathrm{He}$?

B2 For a sample of gas, the difference in the heat capacities at constant pressure and at constant volume $C_{\mathrm{p}}-C_{\mathrm{v}}=34.8 \mathrm{~J} \mathrm{~K}^{-1}$. Find (a) the number of moles, (b) the heat capacity at constant pressure given that the gas is monatomic. [3]

B3 Sketch the temperature-dependence of the specific heat at constant volume, C_{v}, for a solid. Label the essential features of the plot.

B4 The van der Waals equation of state is

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

Sketch the phase diagram (i.e. P against V) for a 'real' (as opposed to 'ideal') gas that obeys the van der Waals equation of state; your sketch should include a $P-V$ curve for temperatures well below, and well above, the critical temperature T_{c}.

B5 The density of solid arsenic is $5730 \mathrm{~kg} \mathrm{~m}^{-3}$. Estimate the distance between arsenic atoms in a piece of solid arsenic.

B6 What is the de Broglie wavelength associated with a neutron which has kinetic energy 5 keV ?

B7 A gas at pressure P is contained in a cylindrical vessel. The gas does work on a friction-free piston by raising it by a small distance $d x$. Show that the work done by the gas is $d W=P d V$, where $d V$ is the change in gas volume.

B8 A radio transmitter with power 3000 W transmits at frequency 500 MHz . How many photons are emitted per second?

C1. (a) In the context of Kinetic Theory, what is meant by the term degree of freedom?
(b) What is the theorem of Equipartition of Energy?
(c) Assuming that $C_{\mathrm{p}}-C_{\mathrm{v}}=R$, in the usual notation, use the Equipartition Theorem to show that the ratio of specific heats $C_{\mathrm{p}} / C_{\mathrm{v}}=\gamma$ has the value $9 / 7$ for a gas consisting of diatomic molecules that both rotate and vibrate.
(d) Would you expect this result to be valid for low, intermediate or high temperatures? Explain your answer.
(e) Sketch the temperature-dependence of the specific heat at constant volume for (i) a monatomic gas and (ii) a diatomic gas. Label the essential features of the plot in each case.

C2. (a) What is meant by an adiabatic process?
(b) How are pressure and volume related for an adiabatic change?
(c) Neon gas, at an initial temperature of $20^{\circ} \mathrm{C}$ and 1 atmosphere pressure, is compressed adiabatically to one-sixth its initial volume. Assuming that the ratio of specific heats for neon is $\gamma=5 / 3$, determine the pressure and temperature of the gas following compression.
(d) If the compression in part (c) had been performed isothermally rather than adiabatically, what would the pressure and temperature following compression be, assuming that the gas had the same initial conditions? $\quad[2 \times 5]$
(e) If the gas in parts (c) and (d) had been O_{2} rather than Ne, what factor(s) in the calculation would have been different?

C3. (a) Show that the Bragg condition for the reflection of X-rays of wavelength from crystal planes whose spacing is d is

$$
2 d \sin \theta=n \lambda,
$$

where θ is the angle between the incident direction and the crystal plane, and n is an integer.
(b) X-rays of wavelength 0.158 nm are reflected from a cubic CsCl crystal; the first order reflection occurs at 15.7°. What value does this give for the interplanar spacing of CsCl ?
(c) How many other (higher) orders can in principle be observed using X-rays of this wavelength?
(d) X-rays having twice the energy are reflected from CsCl ; at what angle is the first order reflection seen?

C4. (a) The radius, R, of an atomic nucleus of atomic number A is given, to a good degree of accuracy, by

$$
\begin{equation*}
R=1.2 \times 10^{-15} A^{1 / 3} \mathrm{~m} ; \tag{5}
\end{equation*}
$$

calculate the radius of a ${ }_{84}^{212} \mathrm{Po}$ nucleus.
(b) An α particle $\left({ }_{2}^{4} \mathrm{He}\right)$ is confined in a ${ }_{84}^{212} \mathrm{Po}$ nucleus. Assuming non-relativistic mechanics, what is the uncertainty, ΔV, in the velocity of the α particle?
[10]
(c) If its actual speed inside the nucleus, V, is the same as ΔV, what is the kinetic energy of the α particle, in MeV ?
(d) The ${ }_{84}^{212}$ Po nucleus undergoes α decay, as follows:

$$
{ }_{84}^{212} \mathrm{Po} \rightarrow{ }_{82}^{208} \mathrm{~Pb}+\alpha .
$$

Work out the Coulomb potential energy, in MeV , of the α particle in the electric field of the ${ }_{82}^{208} \mathrm{~Pb}$ nucleus just after it has left the Pb nucleus. [Assume that the ${ }_{82}^{208} \mathrm{~Pb}$ nucleus is the same size as the ${ }_{84}^{212} \mathrm{Po}$ nucleus, and that the dimensions of the α particle are negligible.]
(e) By how much does the kinetic energy of the α particle fall short of breaking away from the Pb nucleus?

