

ICSE CBSE IGCSE ALEVEL IB IIT IGNOU TYbcom

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination June, 2008

CS-62: 'C' PROGRAMMING AND DATA STRUCTURE

Time : 2 hours		Phours Maximum Marks :	Maximum Marks : 60	
Note :		Question number 1 is compulsory. Answer any three questions from the rest. All algorithms should be written nearer to 'C' language.		
1.	(a)	What is sparse matrix? Discuss methods representation of sparse matrix in memory. Explarow-major and column-major order with example.	9	
	(b)	What is a binary search tree? Write an algorithm to find an element in a binary search tree.	5	
٠	(c)	Define a circular queue. What is the condition that a circular queue is full (if queue is implemented using array)? Write an algorithm for inserting a node at given location in a circular queue.	8	
	(d)	Differentiate between internal and external sorting. Which sorting algorithm is preferred for external sorting? Write an algorithm for K-way merge sort. $2+1+5$	-8	
2.	(a)	Write a program in C for binary search tree.	5	

THE EXAM PAPERS. COM

ICSE CBSE IGCSE ALEVEL IB IIT IGNOU TYbcom

	(b)	Apply Binary search for elements in array P to find the element 40, 11, 22, 30, 33, 40, 44, 55, 60, 66, 77, 80, 88, 99.	3
	(c)	What are the various disadvantages of sequential file organisation?	2
3.	(a)	Convert the following postfix expression into infix using stack : $A B C * D E F \uparrow / G * - H * +$	3
	(b)	What is AVL tree? Construct an AVL search tree by inserting the following elements in order of their occurrence. (Show each of the rotations). 2+5 64, 1, 44, 26, 13, 110, 98, 85	j=7
4.	Writ	e short notes on the following: 5×2=	10
	(i)	Directed graph	*
	(i) (ii)	Directed graph Compaction	
		• ,	•
	(ii)	Compaction	•
	(ii) (iii)	Compaction Complete binary tree	•
5.	(ii) (iii) (iv)	Compaction Complete binary tree Hash function	5
5.	(ii) (iii) (iv) (v)	Compaction Complete binary tree Hash function Height balanced tree	5