9. Non-ideal gases

Last lecture

- Types of bonding, ionic, covalent, metal & Van der Waals
- For VW potential is given by,

$$U = \epsilon \left(\frac{r_0}{r}\right)^{12} - 2\left(\frac{r_0}{r}\right)^6$$

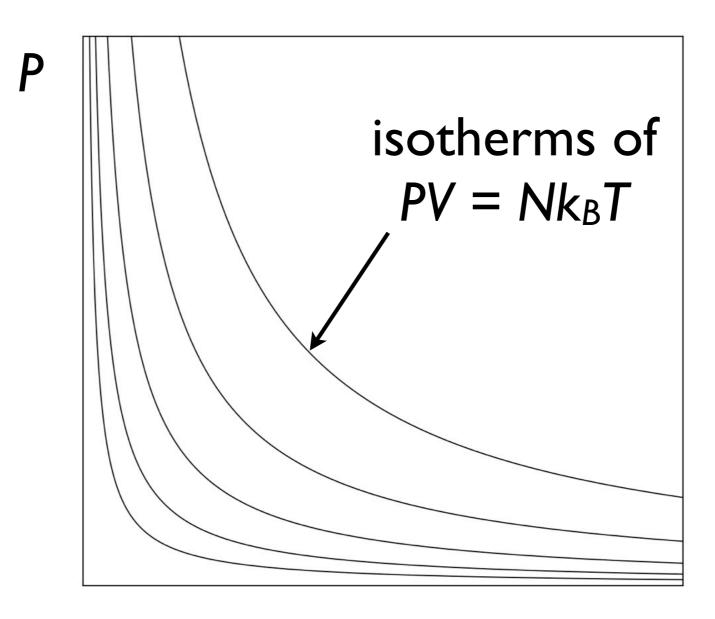
• Atoms in a lattice vibrate, vibrations are particle like (phonons) and can carry heat. Frequency given by,

$$\omega_E = \left(\frac{144\epsilon}{mr_0^2}\right)^1$$

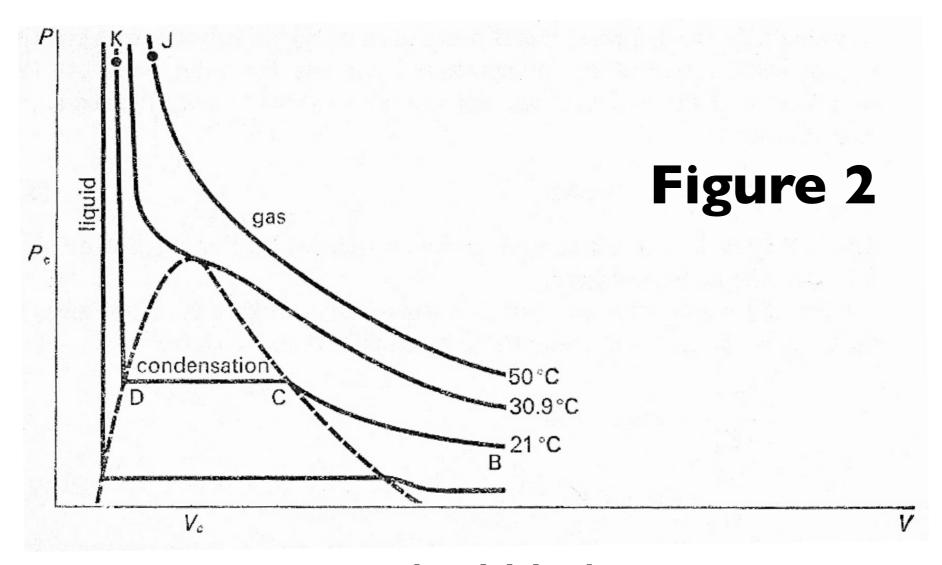
- Solids expand with increasing T, $\Delta L = L_0 \alpha T$
- Molar heat capacity of solid given by $C_{vm} = 3R$ at room temperatures, but phonons frozen out at low T

9.1 van der Waals Equation of State

PV diagram showing isotherms for ideal gas



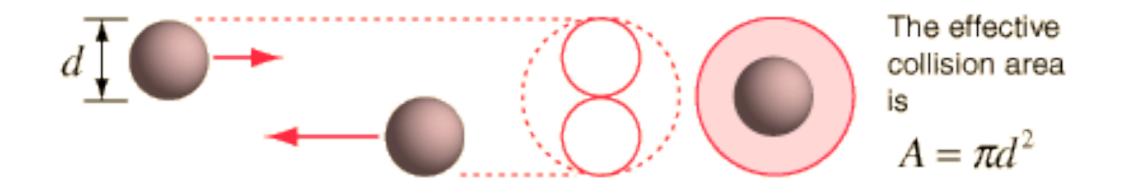
PV diagram showing isotherms for CO₂



van der Waals gas: modify ideal gas eq. of state ($PV = Nk_BT$) by assuming;

(1) molecules are hard spheres (not points) of volume b(2) attractive force over finite range

(1) \rightarrow volume available for motion = V - b N (N = total no. of molecules) Equation of state \rightarrow P (V - bN) = Nk_BT



Effective cross-sectional area $A = \pi d^2$

Effective volume of molecule $b \approx \frac{1}{2} (4/3) \pi d^3$ ($\frac{1}{2}$ is because this volume is per pair of particles) $b \approx \frac{1}{2} (4/3) \pi 8 r^3 = 4 V_m$

Correcting ideal gas EOS for attractive force:

incoming velocity reduced

attraction to other molecules Only gas molecules near edge have unbalanced attraction from the rest of the gas

momentum reduction per impact $\propto n$

but no. of such impacts per unit area $\propto n$

$$\therefore \Delta P \propto n^2 = (N/V)^2$$

van der Waal's equation

 \therefore reduction in $\Delta P \propto n^2 \rightarrow \Delta P = a(N/V)^2$

Hence the ideal gas pressure is reduced by this amount,

$$P = P_{ideal} - \Delta P$$

(where P_{ideal} includes the volume correction.)

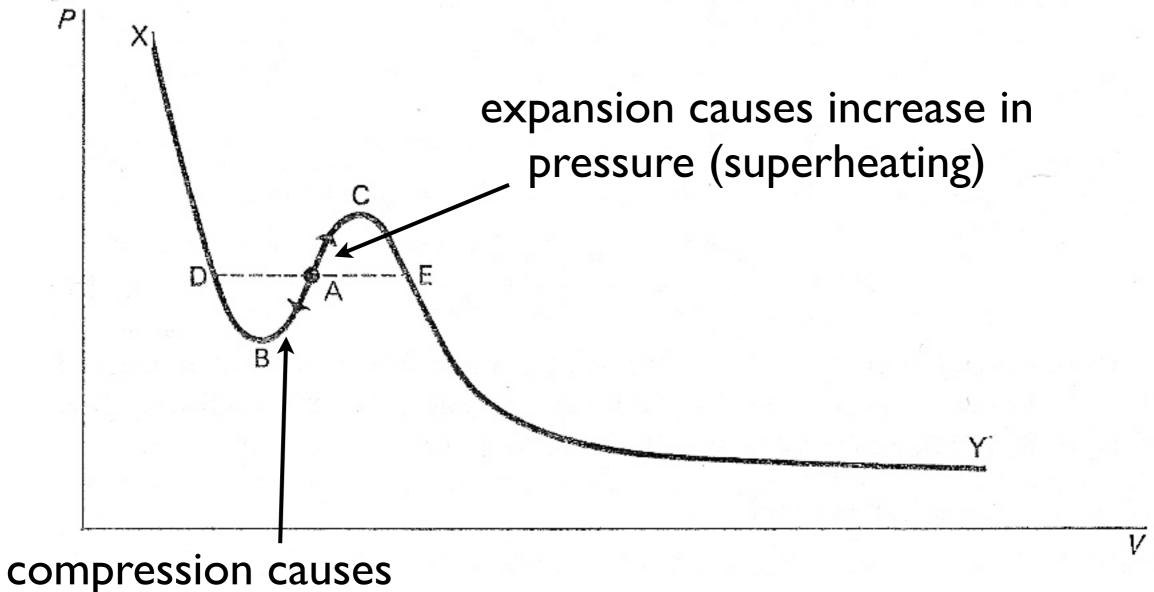
$$\rightarrow P = Nk_BT/(V - bN) - a(N/V)^2$$

a is proportionality constant

(9.1.1) van der Waals equation of state

$$(P + a(N^2/V^2))(V - Nb) = Nk_BT$$

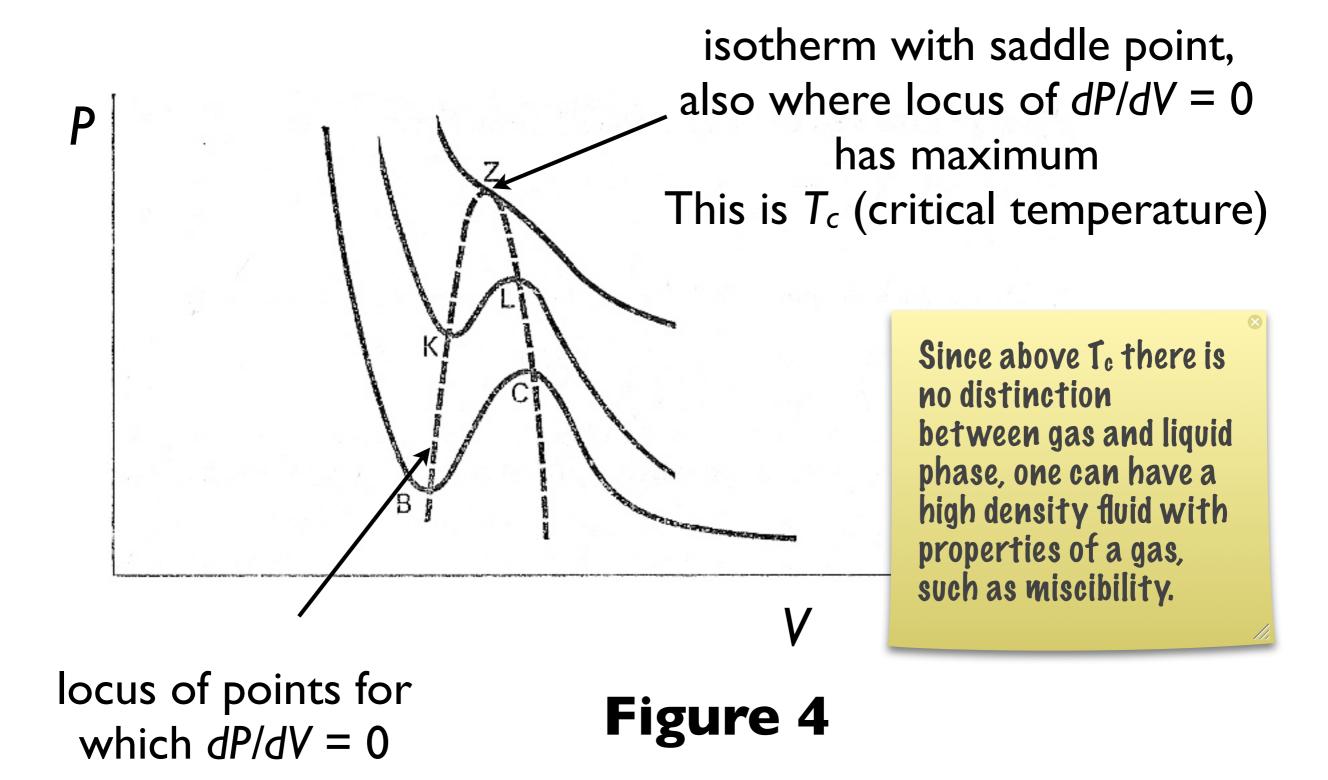
A (low temperature) van der Waal isotherm



reduction in pressure (supercooling)

Figure 3

van der Waal isotherms



9.2 Internal energy of van der Waal gas

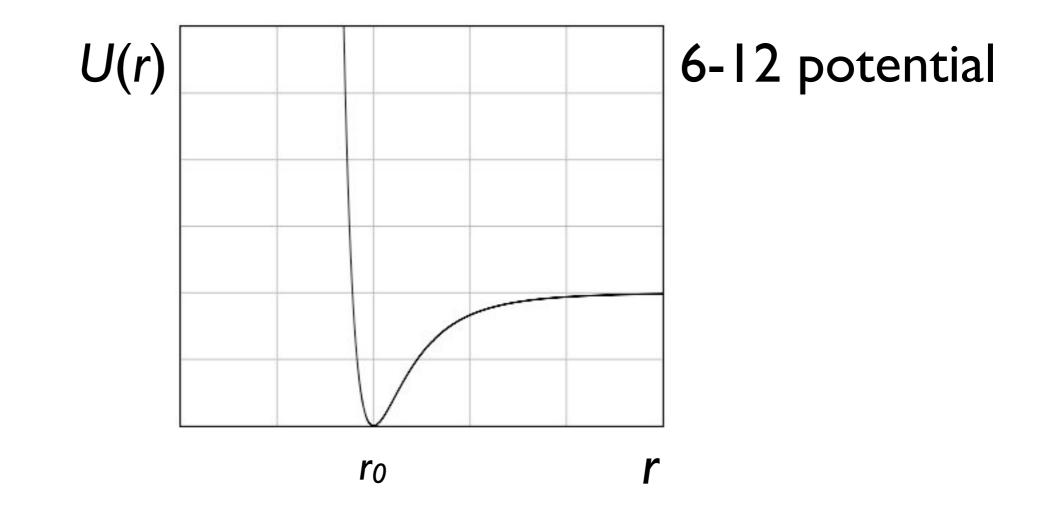


Figure 5

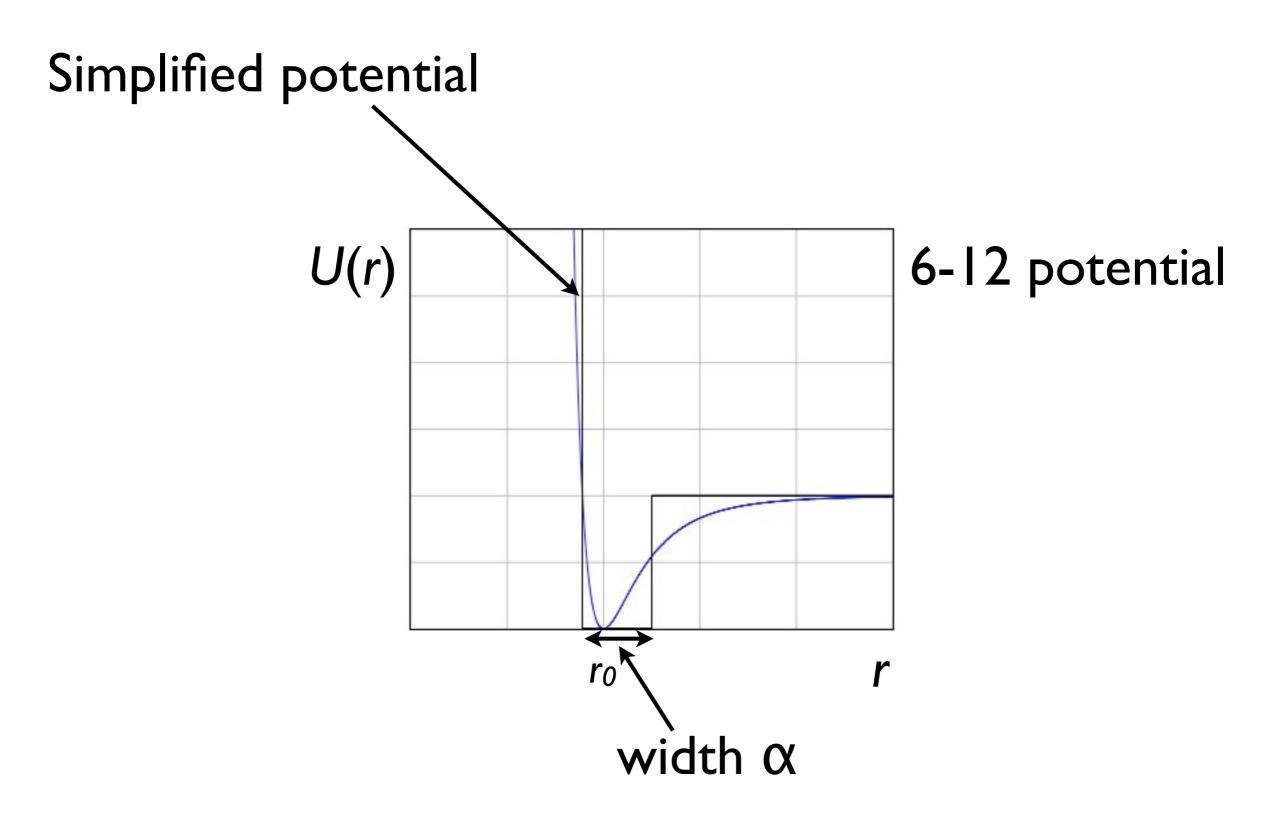
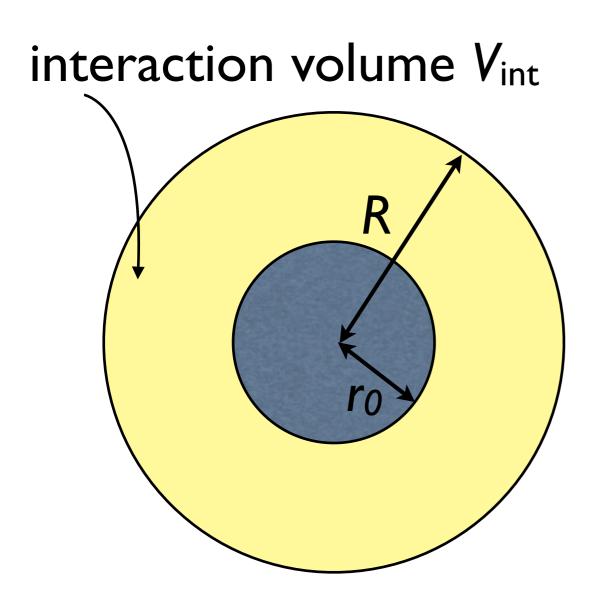


Figure 6



if 2nd molecule within V_{int} , $U = -\varepsilon$ if 2nd molecule outside V_{int} , U = 0

no. of mols in $V_{int} = n V_{int} = N V_{int}/V$

Total no. of such interactions = $(1/2) N (N V_{int}/V)$

(1/2) to not count same interaction twice

Total p.e. = - (1/2) (N^2/V) $V_{int} \epsilon$

So $U = \text{internal energy} = (3/2) Nk_BT - aN^2/V$ where $a = (1/2) V_{\text{int}} \varepsilon$

9.3 Joule-Kelvin free expansion

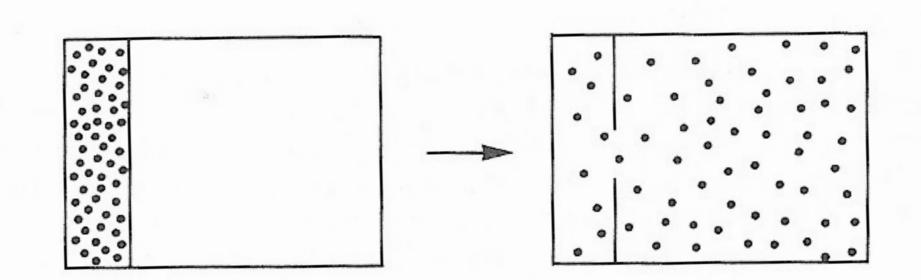


Fig. 7.14. Free expansion of a gas inside a rigid, insulated vessel.

Remove partition \rightarrow gas expands & fills volume. \rightarrow No work done [No piston] $\rightarrow \Delta U = 0$ (1st Law) ideal gas: $\frac{3}{2}Nk_BT = \text{const.} \rightarrow T = \text{const}$ [Vol increased so pressure decreased]

van der Waals gas: $\frac{3}{2}Nk_BT - aN^2/V = \text{const}$

V increases $\rightarrow aN^2/V$ decreases $\rightarrow \frac{3}{2}Nk_BT$ decreases [difference stays constant] $\rightarrow T$ decreases - i.e. gas cools

Micro picture: gas expands \rightarrow molecules further apart \rightarrow intermolecular pe increases \rightarrow ke decreases. This is the basis of the liquification of air (Joule-Thompson process).