Vibrations \& Waves Homework Sheet 1

 QUESTIONS

 QUESTIONS

 (given out: Monday 17 January 2005)

 (given out: Monday 17 January 2005)}

Covers material in V \& W Lectures 1 \& 2

1) Upon solving the Equations of Motion, some simple harmonic oscillators were found to follow:
(i) $\quad x(t)=2 \exp (j 6 t)$
(ii) $\quad x(t)=j 3 \exp (j 6 t)$
(iii) $\quad x(t)=(2+j 3) \exp (j 6 t)$
(iv) $\quad x(t)=(2-j 5) \exp (j 6 t)$

Find the real part of these solutions.
2) Some oscillators were observed to obey the following equations:
(i) $\quad x(t)=5 \cos (8 t)$
(ii) $\quad x(t)=5 \cos (8 t+0.3 \pi)$
(iii) $\quad x(t)=7 \cos (5 t-0.2 \pi)$
(iv) $\quad x(t)=8 \sin (7 t)$

Rewrite these equations in the complex notation of the form:

$$
x(t)=(a+j b) \exp \left(j \omega_{0} t\right)
$$

3) A spring is hung vertically from a support. A mass is attached to the end of the spring. The vertical displacement of the mass is observed to follow the equation:

$$
x(t)=0.07 \cos (5.71 t)
$$

where everything is in SI units. What, in SI units, is (i) the amplitude A, (ii) the angular frequency ω_{0}, (iii) the frequency f and (iv) the period T . If the mass is 0.1 kg , what is the spring constant s of the spring?
How far would the spring have stretched when the mass was initially attached to its end?
Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$.
4) The motion of the horizontal mass on a spring has the general solution:

$$
x(t)=A \cos (5 t+\phi)
$$

Work out the variation of the velocity $\mathrm{v}(\mathrm{t})$ with time. By considering the initial conditions, work out the value of A and ϕ for the following cases:
(i) $\mathrm{t}=0, \mathrm{x}=0.3 \mathrm{~m}, \mathrm{v}=0$
(ii) $\mathrm{t}=0, \mathrm{x}=-0.5 \mathrm{~m}, \mathrm{v}=0$
(iii) $\mathrm{t}=0, \mathrm{x}=0, \mathrm{v}=1.2 \mathrm{~m} / \mathrm{s}$
5) A U shaped tube of cross-sectional area A is filled with a liquid of density ρ. A total length L is filled.

The tube is tilted so that the liquid is displaced by +h on one side and -h on the other side. It is then returned instantaneously to the vertical.
(i) Show that the Equation of Motion is given by:

$$
L A \rho \frac{d^{2} x}{d t^{2}}=-2 A \rho g x
$$

(ii) By solving the Equation of Motion, find the variation of the vertical displacement $\mathrm{x}(\mathrm{t})$ of the liquid with time t .
(iii) At what angular frequency ω_{0} does the liquid oscillate?
(iv) What is the velocity $\mathrm{v}(\mathrm{t})$ of the oscillating liquid?
(v) What is the acceleration $\mathrm{a}(\mathrm{t})$?
(vi) Derive the variation of the potential energy PE of the liquid with x and t .
(vii) Derive the variation of the kinetic energy KE of the oscillating liquid with t .
(viii) Find the total energy TE of the oscillating liquid.
(ix) Find the variation of KE with x .
6) An oscillator has a non-linear restoring force with an Equation of Motion:

$$
m \frac{d^{2} x}{d t^{2}}=-50 x-3 x^{2}-0.06 x^{3}
$$

(i) What general form would we expect the displacement x to follow with time t ?
(ii) $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} are the amplitudes of the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ Harmonics. What would we expect qualitatively for the ratio of these amplitudes?
(iii) By using the general trial solution and the Equation of Motion, find the relationship between A_{1} and A_{2} and between A_{1} and A_{3}.

