Vibrations \& Waves Classwork 4 - (Solutions)

i) It's the same as Young's slits:

For constructive interference: $x_{2}-x_{1}=m \lambda$
For: $s>a \quad \quad \Rightarrow \quad x_{2}-x_{1}=a \sin \theta$

$$
\sin \theta=\boldsymbol{m} \lambda / a
$$

$s \gg a \quad=>\quad \sin \theta \approx \theta=m \lambda / a$
ii)

$$
y / s=\tan \theta \approx \theta
$$

For constructive interference: $y=\operatorname{sm} \lambda / a$
On either side of physicist: $m= \pm 1$

$$
y=10 \times 1 \times 0.2 / 1=2.0 \mathrm{~m}
$$

b) i) $\lambda_{n}=2 d / n \quad$ where $n=1,2,3,4,56, \ldots \ldots$

Hence if same frequency as ripples => Same wavelength
$\Rightarrow \lambda=0.2 m$
$n=2 d / \lambda_{n}=2 \times 0.7 / 0.2=7$
$=>7^{\text {th }}$ mode
ii) For standing waves on water in the rectangular box, can have a node or antinode at centre of box
Circles => From symmetry considerations must have antinode at centre of bowl
Circular standing waves: $\lambda_{n}=2 d / n$
For antinode at $x=d / 2$ in centre of bowl $=>n=2,4,6,8 \ldots$.
$7^{\text {th }}$ mode cannot occur
(c)i)

Initially pulse has not dispersed - it still exists.
Velocity of pulse => group velocity:

$$
\mathrm{v}_{g}=\frac{d \omega}{d k}
$$

Phase velocity:

$$
\begin{aligned}
& \mathrm{v}=\frac{\omega}{\mathbf{k}}=\sqrt{\mathbf{g} / \boldsymbol{k}} \\
& =>=\sqrt{\boldsymbol{g k}}
\end{aligned}
$$

Group velocity $=>v_{g}=\frac{d \omega}{d k}=\frac{1}{2} \sqrt{\frac{g}{k}}=\frac{1}{2} \sqrt{\frac{g \lambda}{2 \pi}}$
Pulse peaked at wavelength of 0.25 m .
$=>$ Pulse velocity: $v_{g}=0.315 \mathrm{~ms}^{-1}$
ii)
$v=\sqrt{g / k}=\sqrt{\lambda g / 2 \pi}$
Phase velocity of 0.1 m waves: $0.399 \mathrm{~ms}^{-1}$
Phase velocity of 0.4 m waves: $0.799 \mathrm{~ms}^{-1}$
Goes $10 \mathrm{~m}=>$
Arrival time of 0.1 m waves: 25.06 s
Arrival time of 0.4 m waves: 12.53 s
iii)

When 0.4 m waves arrive, distance travelled by 0.1 m waves $=5.0 \mathrm{~m}$
Initial pulse width: 0.3 m
Current pulse width: 5 m
=> The pulse has dispersed.

