Vibrations \& Waves Classwork 2 - (Solutions)
 (Problems given out: Monday 24 January 2005)

$\mathrm{M}=95 \mathrm{~kg}, \mathrm{P}_{\mathrm{av}}=400 \mathrm{~W}, \omega_{\text {max }}=83.8 \mathrm{rad} / \mathrm{s}, \mathrm{m}=5 \mathrm{~kg}$. $\mathrm{x}_{0}=0.01 \mathrm{~m}, \mathrm{R}=0.3 \mathrm{~m}$,
(i) $F_{0}=\frac{m v^{2}}{R}=\frac{m}{R}\left(\frac{2 \pi R}{T}\right)^{2}=m \omega^{2} R$

At $\omega_{0}=>F_{0}=m \omega_{0}^{2} R$
(ii)

$$
\begin{aligned}
& Z_{m}=\sqrt{r^{2}+(M \omega-s / \omega)^{2}} \\
& =\sqrt{r^{2}+\left(M \omega_{0}-s / \omega_{0}\right)^{2}} \\
& =\sqrt{r^{2}+(M \sqrt{s / M}-s / \sqrt{s / M})^{2}} \\
& =\sqrt{r^{2}+(\sqrt{s M}-\sqrt{s M})^{2}}=r
\end{aligned}
$$

(iii) $x_{0}=\frac{F_{0}}{\omega Z_{m}} \quad \Rightarrow \quad x_{0}=\frac{F_{0}}{\omega_{0} r}$
(iv) $P_{a v}=\frac{r F_{0}^{2}}{2 Z_{m}^{2}} \quad \Rightarrow \quad P_{a v}=\frac{F_{0}^{2}}{2 r}$
(v)

$$
r=\frac{F_{0}}{\omega_{0} x_{0}}=\frac{F_{0}^{2}}{2 P_{a v}}=>\frac{1}{\omega_{0} x_{0}}=\frac{F_{0}}{2 P_{a v}}
$$

$$
\Rightarrow \frac{1}{\omega_{0} x_{0}}=\frac{m \omega_{0}^{2} R}{2 P_{a v}}=>\omega_{0}^{3}=\frac{2 P_{a v}}{m R x_{0}}
$$

(vi) $\omega_{0}=\sqrt[3]{\frac{2 P_{a v}}{m R x_{0}}}=\sqrt[3]{\frac{800}{5 \times 0.3 \times 0.01}}=37.64 \mathrm{rad} / \mathrm{s}$

$$
\text { (vii) } F_{0}=5 \times 37.6^{2} \times 0.3=2,120 \mathrm{~N}
$$

$$
\begin{aligned}
& r=\frac{F_{0}}{\omega_{0} x_{0}}=\frac{2120}{37.64 \times 0.01}=5,630 \mathrm{Ns} / \mathrm{m} \\
& s=\omega_{0}^{2} M=(37.64)^{2} 95=134,600 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

(viii)

[NOTE: I have removed the calculation of ω_{r} from the original Question and Answer sheet - it did'nt work! The system is so close to critical (see (ix) below) that $\left(\omega_{0}^{2}-\frac{\boldsymbol{r}^{2}}{2 \boldsymbol{M}^{2}}\right)<\mathbf{0}$ but $\left(\omega_{0}^{2}-\frac{\boldsymbol{r}^{2}}{4 \boldsymbol{M}^{2}}\right)>\mathbf{0}$. Hence, is ω_{r} meaningless in this case. We work out ω_{r} from when the amplitude x_{0} of forced SHM is a maximum. However, close to critical the peak in the curve disappears! Hence you can't calculate a value of ω_{r}].
$\boldsymbol{Q}=\frac{\boldsymbol{M} \omega_{0}}{\boldsymbol{R}}=\frac{95 \times 37.64}{5630}=0.635$
$\Delta \omega=\frac{\omega_{0}}{Q}=\frac{37.64}{0.635}=59.3 \mathrm{rad} / \mathrm{s}$
$\omega_{0}+\frac{\Delta \omega}{2}=37.64+\frac{59.3}{2}=67.3 \mathrm{rad} / \mathrm{s}$
$=>\omega_{\text {max }}=83.8 \mathrm{rad} / \mathrm{s}=>$ outside bandwidth
(ix)
$\frac{r^{2}}{4 M^{2}}=\frac{5630^{2}}{4 \times 95^{2}}=878$
$\omega_{0}^{2}=37.64^{2}=1417$
$\Rightarrow \omega_{0}^{2}>\frac{r^{2}}{4 M^{2}}$
=> just lightly damped - but very close to critical => well designed washing machine

