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Problem Sheet 3
Lectures 6–8

Learning Outcomes

Jargon
Translational, rotational and vibrational degrees of freedom, van der Waals force, ionic

and covalent bonds, van der Waals equation of state, mean free path.

Concepts
Number of each type of degree of freedom for a diatomic molecule; how quantum effects

modify the number of degrees of freedom of real gases, and how the number varies as the
temperature is raised for a diatomic gas; the basic features of the Lennard-Jones 6-12 po-
tential; the origin of the coefficients a and b in the van der Waals equation of state (note:
students are not expected to memorize the exact form of the equation); understand quali-
tatively why the internal energy of a van der Waals gas differs from an ideal gas with the
same N , V and T ; the form of the van der Waals isotherms on a P-V diagram; derivation of
an expression for the mean free path, assuming rigid spherical particles, only one of which
is moving.

Problems

1. Show that < v2
x >=

kBT

m
.

2. A diatomic molecule can be regarded as two identi-
cal particles joined by a spring. At any instant the
x coordinates (defining the x direction as shown) of
the centres of the two particles are x1 = x−d/2 and
x2 = x+d/2, where x is the x coordinate of the cen-
tre of mass of the molecule and d is the separation of
the particles. By writing d = d0+ξ, where d0 is the
equilibrium separation and ξ is the displacement
from equilibrium, show that the kinetic energy as-

sociated with the x component of the two particles’ velocities is
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where m is the mass of the whole molecule, vx =
dx

dt
= x component of the centre of

mass velocity, and ν =
dξ

dt
.

3. The Lennard-Jones 6-12 potential has the form U(r) = ε
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}

where r

is the separation of the particles. Show that the equilibrium separation is r0, and that
the binding energy is −ε.



4. (a) We can generalize the Lennard-Jones 6-12 potential by assuming an attractive
potential ∝ −r−n, while keeping the repulsive potential ∝ r−12. The potential

energy of the interaction can be written U =
A

x12
− B

xn
where A and B are con-

stants, x = r/r0 and r0 is the equilibrium separation. Show that B = 12A/n, and,

hence, that the magnitude of the binding energy is given by ε = A

(
12

n
− 1

)
.

(b) The van der Waals force corresponds to n = 6, while the Coulomb force respon-
sible for ionic boning corresponds to n = 1. Assuming that the repulsive force
(i.e., the value of A) is the same in both cases, compare the depths of the van
der Waals and ionic potential wells. What does this suggest about the relative
strengths of van der Waals and ionic bonds?

5. A simple model of a gas treats the molecules as hard spheres of radius a, which only
interact through collisions (i.e., there is no attractive force between them). Consider
one molecule to be moving, and the others stationary. The moving molecule’s path
is deflected at each collision, but if we straighten it out we could imagine the mole-
cule sweeping out a cylinder of cross-sectional area σ such that a collision will occur
whenever the centre of one of the stationary molecules falls within the cylinder.

(a) Write down an expression for σ in terms of a.

(b) Show that the average number of collisions experienced by the moving molecule
in travelling a distance l is 4πNla2/V , where V is volume of the container and N
the total number of molecules in volume V .

(c) Hence show that the average distance travelled before experiencing a collision (the

mean free path) is given by λ =
V

4πNa2
.

(d) When the motion of the other molecules is taken into account the value of λ is
reduced by a factor of

√
2. Assuming the ideal gas equation of state show that

the mean free path can be written λ =
kBT

4
√

2πa2P
.

(e) Calculate λ for an Oxygen molecule in air at 20oC and a pressure of 1 atmosphere
(= 1.01× 105 N m−2). Assume the molecule is a sphere of radius 2.0× 10−10 m.

(f) In Problem Sheet 2, we found that the average speed of an Oxygen molecule at
20o C was 440 m s−1. Calculate the average time between collisions.

6. Show that the constant volume heat capacity of a van der Waals gas is the same as
that of a monatomic ideal gas containing the same number of molecules.

7. Assuming that Oxygen molecules are spheres of radius 2.0 × 10−10 m, estimate the
pressure at which the finite size of the molecules causes a 1% departure from ideal gas
behaviour at 20oC. (Ignore the attractive force between molecules.)



8. In Section 8.1 of Lecture 8 we saw that the low temperature isotherms of the van
der Waals gas on a P − V diagram have a maximum and a minimum, while the high
temperature ones don’t. The dividing line between these two types is an isotherm

along which there is a point (called the critical point) at which
dP

dV
= 0 and

d2P

dV 2
= 0.

The temperature of this isotherm is called the critical temperature, Tc. Show that

Vc = 3Nb and Tc =
8a

27kBb
, where Vc is the volume at the critical point, and a and b

are the constants in the van der Waals equation of state.

Numerical Answers

4. (b) Ionic potential well is 11 × deeper.

5. (e) 5.63× 10−8 m,

(f) 1.28× 10−10 s.

7. About 12 atmospheres.


