M. Coppins 06.05.05

Problem Sheet 2 Lectures 4 and 5

Learning Outcomes

Jargon

Isothermal atmosphere, distribution function, velocity component distribution, Maxwell speed distribution, moment of a distribution function, velocity space.

Notation

 $f(v_x), f(v), v_{mp}, < v >, < v^2 >, v_{rms}.$

Concepts

Differential equation for the variation of pressure with height in an isothermal atmosphere (derivation, and solving it to find the variation of number density with height); Boltzmann law; normalizing distribution function; deriving the expression for v_{mp} in a Maxwell distribution; given appropriate standard integrals, be able to find $\langle v \rangle$ and $\langle v^2 \rangle$.

Problems

- 1. The velocity component distribution function has the form $f(v_x) = Ae^{-\alpha v_x^2}$ where $\alpha = m/2k_BT$ and A is a constant. Use the fact that a molecule must have *some* value of v_x between $-\infty$ and $+\infty$ to show that $A = \left(\frac{m}{2\pi k_B T}\right)^{1/2}$.
- 2. Show that the most probable speed in a Maxwell distribution is $v_{mp} = \left(\frac{2k_BT}{m}\right)^{1/2}$.
- 3. In Sec. 5.4 of the lectures we found that the average speed in a Maxwell distribution is given by $\langle v \rangle = 4\pi A^3 \int_0^\infty v^3 e^{-\alpha v^2} dv$. Show that $\langle v \rangle = \left(\frac{8k_BT}{\pi m}\right)^{1/2}$.
- 4. The mean square speed, $\langle v^2 \rangle$, i.e., the average value of v^2 , is given by $\int_0^\infty v^2 f(v) \, dv$ (integrals of the form $\int_0^\infty v^n f(v) \, dv$ are called moments of the distribution function). Show that $\langle v^2 \rangle = \frac{3k_BT}{m}$, and hence write down an expression for the average kinetic energy of a monatomic molecule in a Maxwell distribution.
- 5. We can identify three characteristic speeds in a Maxwell distribution: (1) v_{mp} , (2) $\langle v \rangle$, (3) $v_{rms} = (\langle v^2 \rangle)^{1/2}$, i.e., the root mean square speed. Calculate the values of these three speeds for O₂ molecules at 20°C (the atomic mass of Oxygen is 16.0).

- 6. In Problem Sheet 1 (Q. 2) we considered the plasma in a fusion reactor in which the ions and electrons both have a temperature of 10^8 K. The ions are a mixture of Deuterium and Tritium. For each of the three types of particles in the plasma (Deuterium ions, mass 3.34×10^{-27} kg, Tritium ions, mass 5.01×10^{-27} kg, and electrons, mass 9.11×10^{-31} kg) calculate
 - (a) the average particle speed,
 - (b) the average particle energy.
- 7. Show by integrating over the velocity component distribution function that $\langle v_x \rangle = 0$.
- 8. In Classwork II we wrote the probability of a molecule being between heights z and z + dz in an isothermal atmosphere as p(z)dz, where $p(z) = \frac{1}{\lambda}e^{-z/\lambda}$, and $\lambda = \frac{k_BT}{mg}$. Show that the average height of a molecule in the atmosphere is λ , and hence obtain an expression for the average potential energy in terms of T. [Hint: this question involves an integral which is not on the list in Handout 1. You might consider doing it by parts.]

Numerical Answers

- 5. 390 ms^{-1} , 440 ms^{-1} , 478 ms^{-1} .
- 6. (a) Deuterium ions: $1.03 \times 10^6 \text{ ms}^{-1}$, Tritium ions: $8.36 \times 10^5 \text{ ms}^{-1}$, electrons: $6.21 \times 10^7 \text{ ms}^{-1}$.
 - (b) 2.07×10^{-15} J for all three types.