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First Year Physics 17.03.05

Problem Sheet 1
Introductory Lecture and Lectures 1–3

Learning Outcomes

Jargon
Macroscopic, microscopic, absolute temperature, mole, latent heat, internal energy, de-

grees of freedom, equilibrium, quasistatic process, isothermal, adiabatic, heat capacity, con-
stant volume and constant pressure heat capacities, specific heat, molar specific heat.

Notation
K (kelvin), kB, R, NA, U , ∆U , Q, W , CV , CP , cV , cP , γ (ratio of specific heats).

Concepts
Qualitative differences between solids, liquids and gases at microscopic level; thermal mo-

tion; ideal gas equation of state (and assumptions needed to derive it); relationship between
P and U in ideal gas; theorem of equipartition of energy; qualitative distinction between
work and heat at the microscopic level; first law of thermodynamics; calculating work done
in quasistatic compression/expansion; plotting quasistatic process on PV diagram; process
dependent nature of work and heat; relationship between heat capacities and number of
degrees of freedom; relationship between P and V in adiabatic process.

Problems

1. (a) An ideal gas has a pressure of 1 atmosphere, a volume of 0.5 m3 and a temperature
of 300 K. Calculate the number of molecules it contains.

[1 atmosphere = 1.0× 105 N m−2.]

(b) Three moles of an ideal gas is at a pressure of 102 N m−2 and has a temperature
of -10o C. Calculate its volume.

2. The plasma in a fusion reactor can be thought of as a mixture of two gases, an ion
gas and an electron gas, both of which have a number density of 5.0 × 1019 particles
m−3 and a temperature of 108 K. The volume of the plasma is 103 m3. Assuming
that both ion and electron gases can be treated as ideal gases with three degrees of
freedom, calculate the pressure and internal energy of each gas separately. Hence find
the pressure and internal energy of the whole plasma. Express the plasma pressure in
atmospheres.



3. A monatomic ideal gas, initially at a pressure of 1 atmosphere, a volume of 0.5 m3,
and a temperature of 300 K, goes through the following four part quasistatic cycle:

(1) increase of pressure at constant volume to 1.5 atmospheres.

(2) expansion at constant pressure to 1 m3,

(3) reduction of pressure at constant volume to 1 atmosphere,

(4) compression at constant pressure to 0.5 m3,

(a) Plot these four parts on a single PV diagram.

(b) Calculate ∆T , the temperature change, for each part separately.

(c) Calculate ∆U , the internal energy change, for each part separately.

(d) Calculate the total internal energy change for the whole cycle.

(e) Calculate W , the work done on the gas, during each part separately.

(f) Calculate the total work done by the gas over the whole cycle.

(g) You should have found that after going through the whole cycle the internal
energy of the gas is unchanged, but it has done a finite amount of work. Where
has the energy for this come from?

(h) How is the total work done by the gas indicated on the PV diagram of part (a)?

4. (a) Argon is a monatomic gas with an atomic mass of 40.0. A volume of 1 m3 of
Argon is at a temperature of 300 K, and a pressure of 105 N m−2. Assuming it
can be treated as an ideal gas, calculate the number of molecules, the number of
moles, and the mass of the gas.

(b) Calulate the constant volume and constant pressure heat capacities, CV and CP

(in J K−1), and their ratio CP /CV .

(c) Calulate the constant volume and constant pressure specific heats, cV and cP (in
J K−1 kg−1), and their ratio cP /cV .

(d) Calulate the constant volume and constant pressure molar specific heats, also
denoted cV and cP , (in J K−1 mol−1), and their ratio cP /cV .

5. In Lecture 3 we disussed the concepts of heat capacity and specific heat with reference
to gases. But they can also be applied to liquids and solids.

Consider two blocks of iron, one of mass 5 kg and initial temperature 50oC, the second
of mass 10 kg and initial temperature 0oC. They are placed in thermal contact and
allowed to reach equilibrium at the same temperature. Assuming there are no thermal
losses to the surroundings, calculate the final temperature.



6. (a) An adiabatic process is one in which there is no heat flow (dQ = 0). Recalling

that the internal energy of an ideal gas is U =
nd

2
NkBT (where nd id the number

of degrees of freedom), show that the first law of thermodynamics for an adiabatic

process in an ideal gas can be written:
dT

T
= − 2

nd

dV

V
.

(b) Integrate this to show that such a process satisfies: TV 2/nd = constant.

(c) Show that the equation found in part (b) can be rewritten as PV γ = constant,
[different constant from part (b)] where γ = CP /CV i.e., γ is the ratio of heat
capacities; usually known as the ratio of specific heats which, of course, is the
same thing (see Q. 4). What is the value of γ for a monatomic gas?

(d) A monatomic ideal gas initially has pressure P0 and volume V0. It then undergoes
isothermal expansion to volume 2V0. A second monatomic ideal gas (with the
same value of N) also initially has pressure P0 and volume V0. it undergoes
an adiabatic expansion to 2V0. Sketch both of these processes on the same PV
diagram. Which curve is steeper? Which ends at the higher temperature?

7. (a) Use the first law of thermodynamics to show that the work done in an adiabatic
process (dQ = 0) in an ideal gas is given by

W = CV (T1 − T0)

where T0 and T1 are the initial and final temperatures.

(b) Alternatively, the work done can be found by integrating the pressure with re-
spect to volume. Do this for an adiabatic process in an ideal gas, recalling that
PV γ = constant in such a process (previous question) to show that

W =
1

γ − 1
(P1V1 − P0V0)

where P0 and V0 are the initial pressure and volume, and P1 and V1 are the final
pressure and volume.

(c) Show that the expressions obtained in parts (a) and (b) agree.

8. (a) The speed of sound in a gas is given by vs =

√
γP

ρ
where γ is the ratio of specific

heats in the adiabatic law [Q. 6 (c)] and ρ is the density (in kg m−3) of the gas.
Show that if the sound speed is measured to be vs at some temperature T then
the number of degrees of freedom of the gas molecules can be found from:

nd = 2

(
mv2

s

kBT
− 1

)−1

where m is the mass of a gas molecule.

(b) The average mass per molecule in air is 4.82 × 10−26 kg. The speed of sound in
air at 20oC is 344 m s−1. Calculate nd in air (round to the nearerst integer).

(c) Is the answer to part (b) what you would have expected?

Numerical answers overleaf



Numerical Answers

1. (a) 1.22× 1025 molecules

(b) 65.6 m3

2. Pion = Pelectron = 6.9× 104 Pa

Uion = Uelectron = 1.03× 108 J

Ptotal = 1.37 atmospheres

Utotal = 2.07× 108 J

3. (b) 150 K, 450 K, −300 K, −300 K

(c) 3.79× 104 J, 1.136× 105 J, −7.64× 104 J, −7.64× 104 J

(e) 0, −7.57× 104 J, 0, 5.05× 104 J

(f) 2.52× 104 J

4. (a) 2.42× 1025 molecules, 40.1 moles, 1.60 kg

(b) 500 JK−1, 833 JK−1, 1.67

(c) 312 JK−1kg−1, 521 JK−1kg−1, 1.67

(d) 12.5 JK−1mol−1, 20.8 JK−1mol−1, 1.67

5. 16.7o C

6. (c) γ = 5/3 for a monatomic ideal gas

8. (b) 5


