M. Coppins 10.05.05

Classwork II The Isothermal Atmosphere

Information needed for this Classwork

Boltzmann's constant: $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$. Absolute zero = -273^{O} C. Acceleration due to gravity: $g = 9.81 \text{ m s}^{-2}$.

- 1. The probability that a given molecule in an isothermal atmosphere is between heights z and z + dz can be written p(z)dz, where $p(z) = \frac{1}{\lambda}e^{-z/\lambda}$. Write down an expression for λ in terms of T, the temperature, and m, the mass of a molecule.
- 2. Sketch p(z) for $0 < z < 3\lambda$.
- 3. The probability that a molecule is located between $z = z_1$ and $z = z_2$ is $\int_{z_1}^{z_2} p(z) dz$.
 - (a) Calculate the probability that a given molecule is between z = 0 and $z = \lambda$.
 - (b) Calculate the probability that a given molecule is between $z = \lambda$ and $z = 2\lambda$.
- 4. Show that $\int_0^\infty p(z) dz = 1$, and interpret this result.
- 5. Calculate λ for $T = 20^{\circ}$ C and $m = 4.82 \times 10^{-26}$ kg (the average mass per molecule in air).
- 6. There is a 99.9% probability that any given molecule is located below a certain height z^* . Calculate the value of z^* for the parameters given in Q 5.
- 7. In deriving the isothermal atmosphere model we assumed that g, the acceleration due to gravity, was independent of height. Was this a reasonable assumption?

Numerical Answers 3a) 0.63; 3b) 0.23; 5) 8.55 km; 6) 59.1 km