Classwork I
 Hot Air Balloons

Information needed for this Classwork

Boltzmann's constant: $k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$.
Absolute zero $=-273^{\circ} \mathrm{C}$.
1 atmosphere $=1.01 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$.

1. Air consists of a mixture of gases, notably Nitrogen and Oxygen. The average mass per molecule in air is $4.82 \times 10^{-26} \mathrm{~kg}$. Assuming that air can be treated as an ideal gas, calculate the density of air (in $\mathrm{kg} \mathrm{m}^{-3}$) at a pressure of 1 atmosphere and a temperature of $20^{\circ} \mathrm{C}$.
2. A container of fixed volume is full of air. There is a small hole in the container, as a result of which the air pressure inside is always equal to the external air pressure. However, the temperature of the air inside can be raised above the external air temperature. Show that the density of the air inside the container is $\rho_{1}=\rho_{0} T_{0} / T_{1}$, where ρ_{0} and T_{0} are the external air density and temperature respectively, and T_{1} is the internal air temperature.
3. Consider a hot air balloon to be a fixed volume container of the type discussed in Q. 2 . Archimedes' Principle tells us that the balloon will rise if the mass of air displaced by the balloon exceeds the total mass of the balloon (i.e., the mass of air inside, plus the mass of the load and the material of the balloon itself). Assuming that the volume of the air inside is V, and that the volume of the load is negligible, show that the balloon will take off with a load of mass m_{L} (which includes the mass of the material of the balloon) if the temperature of the air inside satisfies the condition:

$$
T_{1} \geq T_{0}\left(1-\frac{m_{L}}{\rho_{0} V}\right)^{-1}
$$

4. Calculate the minimum temperature T_{1} for a hot air balloon of volume $V=1000 \mathrm{~m}^{3}$ with a load of mass $m_{L}=300 \mathrm{~kg}$ to take off, assuming that the external air is at a pressure of 1 atmosphere and a temperature of $20^{\circ} \mathrm{C}$.
5. Before the air in the ballon was heated (i,e., while still at the ambient temperature of $20^{\circ} \mathrm{C}$) the internal energy of the air in the balloon was U_{0}. After the temperature was raised to the value found in Q. 4 the internal energy of the air in the balloon was U_{1}. Without calculating the separate values U_{0} and U_{1}, find the ratio U_{1} / U_{0}.
6. Why are you asked not to calculate the separate values U_{0} and U_{1} in Q. 5?

Numerical Answers

1) $1.20 \mathrm{~kg} \mathrm{~m}^{-3}$; 4) $391 \mathrm{~K}\left(=118{ }^{\circ} \mathrm{C}\right)$; 5) 1
