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Lecture 0
All common matter made of atoms

All atoms have a potential that is repulsive at 
close distance, attractive away from eqm 
position, and tends to zero at large separation.

Structure of matter depends on ratio of kinetic 
energy compared to this potential



Lecture 1

Gases characterised by P, V, Nmoles, T - (State Variables)

Equation of State relates State Variables, 
PV = Nmoles R T = N kB T

From kinetic theory, P = n m <vx
2> =  ⅓ n m <v2>

Internal energy PV = ⅔ U 
(implies U(T) only U = ³/₂ N kB T)

Equating to the KE per particle → ½ kB T per degree 
of freedom per particle



vx

-vx

vy

vy

NB y momentum unchanged

∆p = |momentum| to wall at each collision
= |mom. change of part.|
= 2m|vx|

(NB this is per collision)



Lecture 2
Zeroth law: If system C is in thermal equilibrium 
(same temperature) with A and B, then A is in 
thermal equilibrium with B.  Allows us to use 
thermometers.

If two systems are not in thermal equilibrium, 
then heat will flow (conduction, convection, 
radiation)

Heat is a form of energy (∆Q= C ∆T)

First Law: dU = đQ + đW

For gas, dW = -P dV, so dU = dQ - PdV



Lecture 3
For gas dW = -PdV - path dependent
e.g isothermal dW = (NkBT) ln(V0/V1), 
isobaric (followed by isochoric) dW= (NkBT) (1 - V1/V0)

Heat capacity (HC) define dQ = C dT
(also path dependent)
(molar HC, dQ = Nm Cm dT, specific HC, dQ = m c dT)

For ideal gas,     Cv = (nd/2) NkB (Cvm = nd/2 R) 
                        Cp = Cv + NkB  (Cpm = Cvm + R)

Adiabatic equation of state PVγ = constant, 
where γ = Cp / Cv



Path dependence of W
Consider two paths from A to B on PV diagram at the 

same temperature:

Process 1 - 
Isothermal

P

VV1 V0

B

A

PV = NkBT → P ∝ (1/V )



Path dependence of W
Consider two paths from A to B on PV diagram at the 

same temperature:

Process 2 - 
Isobaric (constant 

pressure) 
followed by 
isochoric 

(constant volume)

P

VV1 V0

B

A
C

P1

P20



Cv for ideal gas
For ideal gas: U = nd

1
2NkBT , nd degs. freedom

differentiating dU = 1
2ndNkB dT

1st Law: dQ = dU −dW = 1
2ndNkB dT +P dV

for constant V (i.e. dV = 0)→ dQ = 1
2ndNkB dT

∴ CV = 1
2ndNkB – Heat capacity constant volume

∴ can write U = CV T (for an ideal gas)

For 1 mole of gas CVm = nd
2 R.



Cv for H2



Adiabat steeper than isotherm

Not that adiabats are 
steeper than isotherms

adiabat

NB light blues are isotherms, 
lines of equal (but different!) T 



Lecture 4
Phase Change - Large change in one state variable for 
a small change in another (usually indicating change in 
internal order and associated with latent heat): 
represented by boundaries on PVT diagram 

 Regions of mixed phase on PV diagram. Energy 
overcomes latent heat.

 All states exist at triple point. Evapouration curve 
ends at critical point liquids exist for Ttp < T < Tc

 Latent heat of sublimation can be related to binding 
energy by Ls = N0 (n/2) ε 



PT projection

P

T

LIQUID

SOLID

GAS

CP

TP
a b&c d&e f

a→b: solid T rises
b: starts to melt

b→c: solid / liquid co-exist, T const.
c→d: liquid, T rises

d: starts to vapourise
d→e: liquid / gas coexist, T const.

e→f: gas, T rises



PV projection

LIQUID
+ GAS GAS

SOLID + GAS

P

V

a b c d e f

a→b: solid T rises
b: starts to melt

b→c: solid / liquid co-exist, T const.
c→d: liquid, T rises

d: starts to vapourise
d→e: liquid / gas coexist, T const.

e→f: gas, T rises

Adding heat at constant pressure



Lecture 5
Isothermal model of the atmosphere, 
n = n0e(-z/λ) and P = P0e(-z/λ) , 
where λ = kBT/mg

Probability of particle being within z and z + 
dz, p(z) dz = n(z) A dz / N, so p(z) ∝ e(-mgz/kT)

For two independent co-ordinates to be 
correlated, ProbTot = Prob1 × Prob2

Boltzmann’s Law, p(E) ∝ e(-E/kT)



① pressure from below

② pressure from above (pressure is P+dP at z+dz)

[should find that dP < 0]
③ weight of slab (ρ = density)

dz

Earth

z (height)

Area A

Net upward force = PA - (P+dP)A - ρA dz g

Pressure P+dP

Pressure P

① ② ③



0 5

1

z

P

1 atm

0 λ

λ ≈ 8.5 km, which is the height 
of Everest

human habitation only up to 
about 5 km (in Tibet & Andes)

So Everest (8.5 km) only 
conquered after lightweight 
oxygen canisters.

∴ n = n0 e−z/λ (5.1.2)

where n0 = n(z = 0) [ie. at ground level],

λ = kBT/mg = scale length

also P = nkBT = P0 e−z/λ



Answer: 26 distributions, but for distinguishable particles 
2002 possible arrangements

p(E) ∝ exp(−E/kBT ) (Boltzmann’s Law)



Lecture 6
 Gas molecules constantly colliding, mean 
free path, 

 1D Maxwellian distribution function

 Maxwell-Boltzmann speed distribution

 

 

f(vx) dvx = A exp
(
− 1

2mv2
x/kBT

)
dvx

f(v) dv = A3 exp(−αv2) 4πv2dv

< v >=
∫∞
0 vf(v) dv = (8kBT/πm) 1

2

Most probable speed, vmp = (2kBT/m) 1
2

λ = 1/(
√

2nπd2)



Mean-free path

In time t, volume swept out by a particle with the
mean velocity v̄ is,

V = πd2v̄t

and no. of particles in this volume (which thus equals
number of collisions) is,

Ncoll = nπd2v̄t



1 dimensional Maxwellian

Most probable vx = 0

T

2T



f(v)

v

2T

T

4T

8T

Most probable speed, vmp = (2kBT/m) 1
2

NB particles with very low speeds v unfavoured due
to reduction in density of states at small v



Lecture 7
 Mean square velocity, 

 Mean-kinetic energy of particle

 Kinetic energy due to single degree of freedom

 Implies each degree of freedom contributes ½kBT

 Equipartion theorem : U = ½ nd N kBT

For diatomic gases, also 2 rotation and 2 vibrational 
degrees of freedom, but QM effects mean at room 
temp, vibrational degrees are “frozen out”

< 1
2mv2 >= 3

2kBT

< 1
2mv2

x >= 1
2kBT

< v2 >=
∫∞
0 v2f(v) dv = (3kBT/m)



Lecture 8
 Types of bonding, ionic, covalent, metal & Van der 
Waals

 For VW potential is given by,

 Atoms in a lattice vibrate, vibrations are particle like 
(phonons) and can carry heat. Frequency given by,

 Solids expand with increasing T, ΔL = L0 α Τ
 Molar heat capacity of solid given by Cvm = 3R at 
room temperatures, but phonons frozen out at low T

U = ε
(r0

r

)12
− 2

(r0

r

)6

ωE =
(

144ε

mr2
0

)1/2



r0

distance

potential 
(force)

0

ε

repulsive attractive

Strong 
repulsion 
∝ 1/r13

weak 
attraction 

∝ -1/r7

Lennard-Jones potential: U =
A

r12
− B

r6

rewrite in terms of r0 and ε: U = ε

[(r0

r

)12
− 2

(r0

r

)6
]



Lecture 9
 Van der Waal’s equation for real gas:

 Effective volume of particles  b ≈ 4Vm 
(Vm  = molecular volume)

 Isotherms cubic curves on PV diagram

 Above Tc (critical temperature) no turning points - 
gas and liquid phases indistinguishable

 Internal energy for VW gas, U = (3/2)NkBT - aN2/ V

 Joule-Kelvin process, (3/2)NkBT - aN2/ V = 
constant, basis of gas liquification.

(P + a(N2/V 2))(V −Nb) = NkBT



van der Waal isotherms

isotherm with saddle point,  
also where locus of dP/dV = 0 

has maximum
This is Tc (critical temperature)

locus of points for 
which dP/dV = 0

P

V



Lecture 10
 Archimedes Principle

 Continuity

Bernouilli’s equation

 Fluid equation of motion -Navier-Stokes Eqn

 Turbulence arises at high Reynolds Number

ρgVdisp = buoyancy

P1 + 1
2ρu2

1 + ρh1g = P2 + 1
2ρu2

2 + ρh2g

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇P + ρη∇2u

Re =
vsL

η

u1 · A1 = u2 · A2



Lecture 11
Bose-Einstein fluids: ultracold state of matter; 
exhibit supefluidity, infinite heat conduction, 
quantum effect

Degeneracy for 

Plasmas: superhot state of matter; fluid like but 
with strong interparticle force; exhibit collective 
effects:

Debye shielding 

plasma waves.

Tc ! h2

3mkB
n2/3

λd =
(

ε0kBT

ne2

)1/2

ωp =
(

ne2

ε0m

)1/2


