Revision Lecture
 $23^{\text {rd }}$ May

Lecture 0

- All common matter made of atoms
- All atoms have a potential that is repulsive at close distance, attractive away from eqm position, and tends to zero at large separation.
- Structure of matter depends on ratio of kinetic energy compared to this potential

Lecture

-f. Gases characterised by P, V, $\mathrm{N}_{\text {moles }}, T$ - (State Variables)
-f Equation of State relates State Variables, $P V=N_{\text {moles }} R T=N k_{B} T$
-r. From kinetic theory, $P=n m\left\langle v_{x}^{2}\right\rangle=1 / 3 n m\left\langle v^{2}\right\rangle$
-. Internal energy PV $=2 / 3 \mathrm{U}$ (implies $U(T)$ only $U=3 / 2 N k_{B} T$)
\& Equating to the KE per particle $\rightarrow 1 / 2 k_{B} T$ per degree of freedom per particle

NB y momentum unchanged

$$
\begin{aligned}
\Delta p & =\mid \text { momentum } \mid \text { to wall at each collision } \\
& =\mid \text { mom. change of part. } \mid \\
& =2 m\left|v_{x}\right|
\end{aligned}
$$

(NB this is per collision)

Lecture 2

* Zeroth law: If system C is in thermal equilibrium (same temperature) with A and B, then A is in thermal equilibrium with B. Allows us to use thermometers.
* If two systems are not in thermal equilibrium, then heat will flow (conduction, convection, radiation)
* Heat is a form of energy $(\Delta Q=C \Delta T)$
* First Law: dU = đQ + đW
* For gas, $d W=-P d V$, so $d U=d Q-P d V$

Lecture 3

- For gas $d W=-P d V$ - path dependent e.g isothermal $d W=\left(N k_{B} T\right) \ln \left(V_{0} / V_{1}\right)$, isobaric (followed by isochoric) $d W=\left(N k_{B} T\right)\left(I-V_{I} / V_{0}\right)$
- Heat capacity (HC) define $d Q=C d T$ (also path dependent) (molar HC, $d Q=N_{m} C_{m} d T$, specific $H C, d Q=m c d T$)

For ideal gas, $\quad C_{v}=\left(n_{d} / 2\right) N k_{B}\left(C_{v m}=n_{d} / 2 R\right)$

$$
C_{p}=C_{v}+N k_{B} \quad\left(C_{p m}=C_{v m}+R\right)
$$

- Adiabatic equation of state $P V=$ constant, where $\gamma=C_{p} / C_{v}$

Path dependence of W

Consider two paths from A to B on PV diagram at the same temperature:

Path dependence of W

Consider two paths from A to B on PV diagram at the same temperature:

Process 2 -
Isobaric (constant pressure)
followed by isochoric (constant volume)

C_{ν} for ideal gas

For ideal gas: $U=n_{d} \frac{1}{2} N k_{B} T, n_{d}$ degs. freedom differentiating $\mathrm{d} U=\frac{1}{2} n_{d} N k_{B} \mathrm{~d} T$

1st Law: $\quad \mathrm{d} Q=\mathrm{d} U-\mathrm{d} W=\frac{1}{2} n_{d} N k_{B} \mathrm{~d} T+P \mathrm{~d} V$
for constant $V($ i.e. $\mathrm{d} V=0) \rightarrow \mathrm{d} Q=\frac{1}{2} n_{d} N k_{B} \mathrm{~d} T$
$\therefore \quad C_{V}=\frac{1}{2} n_{d} N k_{B}$ - Heat capacity constant volume
$\therefore \quad$ can write $U=C_{V} T$ (for an ideal gas)
For 1 mole of gas $C_{V_{m}}=\frac{n_{d}}{2} R$.

C_{v} for H_{2}

Adiabat steeper than isotherm

NB light blues are isotherms, lines of equal (but different!) T

Lecture 4

- Phase Change - Large change in one state variable for a small change in another (usually indicating change in internal order and associated with latent heat): represented by boundaries on PVT diagram
- Regions of mixed phase on PV diagram. Energy overcomes latent heat.
\square All states exist at triple point. Evapouration curve ends at critical point liquids exist for $T_{t p}<T<T_{c}$
- Latent heat of sublimation can be related to binding energy by $L_{s}=N_{0}(n / 2) \varepsilon$

PT projection

$$
\begin{gathered}
\mathrm{a} \rightarrow \mathrm{~b} \text { : solid } \mathrm{T} \text { rises } \\
\mathrm{b}: \text { starts to melt } \\
\mathrm{b} \rightarrow \mathrm{c}: \text { solid } / \text { liquid co-exist, } \mathrm{T} \text { const. } \\
\mathrm{c} \rightarrow \mathrm{~d}: \text { liquid, } \mathrm{T} \text { rises } \\
\mathrm{d}: \text { starts to vapourise } \\
\mathrm{d} \rightarrow \mathrm{e}: \text { liquid / gas coexist, } \mathrm{T} \text { const. } \\
\mathrm{e} \rightarrow \mathrm{f}: \text { gas, } \mathrm{T} \text { rises }
\end{gathered}
$$

PV projection

Adding heat at constant pressure

$\mathrm{a} \rightarrow \mathrm{b}$: solid T rises
b: starts to melt
$\mathrm{b} \rightarrow \mathrm{c}$: solid / liquid co-exist, T const. $\mathrm{c} \rightarrow \mathrm{d}$: liquid, T rises
d : starts to vapourise
$\mathrm{d} \rightarrow \mathrm{e}$: liquid / gas coexist, T const. $e \rightarrow f: g a s, T$ rises

Lecture 5

- Isothermal model of the atmosphere, $n=n_{0} e^{(-z / \lambda)}$ and $P=P_{0} e^{(-z / \lambda)}$, where $\lambda=k_{B} T / m g$
- Probability of particle being within z and $z+$ $d z, p(z) d z=n(z) A d z / N$, so $p(z) \propto e^{(-m g z / k T)}$
- For two independent co-ordinates to be correlated, Prob $_{\text {Tot }}=$ Prob $_{1} \times$ Prob $_{2}$
- Boltzmann's Law, $\boldsymbol{p}(E) \propto \mathbf{e}^{(-E / k T)}$

Net upward force $=P A-(P+d P) A-\rho A d z g$
(1) pressure from below
(2) pressure from above (pressure is $P+d P$ at $z+d z$)
[should find that dP < 0]
(3) weight of slab ($\rho=$ density)
$\therefore \quad n=n_{0} e^{-z / \lambda}$
(5.1.2)
where $n_{0}=n(z=0)$ [ie. at ground level],
$\lambda=k_{B} T / m g=$ scale length
also $P=n k_{B} T=P_{0} e^{-z / \lambda}$

$\lambda=8.5 \mathrm{~km}$, which is the height of Everest
human habitation only up to about 5 km (in Tibet $\&$ Andes)

So Everest $(8.5 \mathrm{~km})$ only conquered after lightweight oxygen canisters.

Z

Answer: 26 distributions, but for distinguishable particles 2002 possible arrangements

$$
p(E) \propto \exp \left(-E / k_{B} T\right)
$$

(Boltzmann's Law)

Lecture 6

- Gas molecules constantly colliding, mean free path, $\quad \lambda=1 /\left(\sqrt{2} n \pi d^{2}\right)$
- ID Maxwellian distribution function

$$
f\left(v_{x}\right) \mathrm{d} v_{x}=A \exp \left(-\frac{1}{2} m v_{x}^{2} / k_{B} T\right) \mathrm{d} v_{x}
$$

- Maxwell-Boltzmann speed distribution

$$
f(v) \mathrm{d} v=A^{3} \exp \left(-\alpha v^{2}\right) 4 \pi v^{2} \mathrm{~d} v
$$

- Most probable speed, $v_{m p}=\left(2 k_{B} T / m\right)^{\frac{1}{2}}$
- $\quad<v>=\int_{0}^{\infty} v f(v) \mathrm{d} v=\left(8 k_{B} T / \pi m\right)^{\frac{1}{2}}$

Mean-free path

$n_{V}=$ molecules per unit volume
In time t, volume swept out by a particle with the mean velocity \bar{v} is,
$V=\pi d^{2} \bar{v} t$
and no. of particles in this volume (which thus equals number of collisions) is,
$N_{\text {coll }}=n \pi d^{2} \bar{v} t$

I dimensional Maxwellian

Most probable $v_{x}=0$

Most probable speed, $v_{m p}=\left(2 k_{B} T / m\right)^{\frac{1}{2}}$

NB particles with very low speeds v unfavoured due to reduction in density of states at small v

Lecture 7

- Mean square velocity,

$$
<v^{2}>=\int_{0}^{\infty} v^{2} f(v) \mathrm{d} v=\left(3 k_{B} T / m\right)
$$

- Mean-kinetic energy of particle

$$
<\frac{1}{2} m v^{2}>=\frac{3}{2} k_{B} T
$$

- Kinetic energy due to single degree of freedom

$$
<\frac{1}{2} m v_{x}^{2}>=\frac{1}{2} k_{B} T
$$

- Implies each degree of freedom contributes $1 / 2 k_{B} T$
- Equipartion theorem : $U=1 / 2$ nd $N k_{B} T$
- For diatomic gases, also 2 rotation and 2 vibrational degrees of freedom, but QM effects mean at room temp, vibrational degrees are "frozen out"

Lecture 8

* Types of bonding, ionic, covalent, metal \& Van der Waals
* ForVW potential is given by,

$$
U=\epsilon\left(\frac{r_{0}}{r}\right)^{12}-2\left(\frac{r_{0}}{r}\right)^{6}
$$

* Atoms in a lattice vibrate, vibrations are particle like (phonons) and can carry heat. Frequency given by,

$$
\omega_{E}=\left(\frac{144 \epsilon}{m r_{0}^{2}}\right)^{1 / 2}
$$

* Solids expand with increasing $T, \Delta L=L_{0} \alpha T$
* Molar heat capacity of solid given by $C_{v m}=3 R$ at room temperatures, but phonons frozen out at low T

Lennard-Jones potential: $U=\frac{A}{r^{12}}-\frac{B}{r^{6}}$

rewrite in terms of $r o$ and $\varepsilon: U=\epsilon\left[\left(\frac{r_{0}}{r}\right)^{12}-2\left(\frac{r_{0}}{r}\right)^{6}\right]$

Lecture 9

- Van der Waal's equation for real gas:

$$
\left(P+a\left(N^{2} / V^{2}\right)\right)(V-N b)=N k_{B} T
$$

- Effective volume of particles $b \approx 4 V_{m}$ ($V_{m}=$ molecular volume)
- Isotherms cubic curves on PV diagram
- Above T_{c} (critical temperature) no turning points gas and liquid phases indistinguishable
\bigcirc Internal energy for $V W$ gas, $U=(3 / 2) N k_{B} T-a N^{2} / V$
- Joule-Kelvin process, (3/2) $N k_{B} T-a N^{2} / V=$ constant, basis of gas liquification.

van der Waal isotherms

locus of points for which $d P / d V=0$

Lecture 10

- Archimedes Principle $\rho g V_{\text {disp }}=$ buoyancy

Continuity $\quad u_{1} \cdot \mathbf{A}_{1}=u_{2} \cdot \mathbf{A}_{2}$

- Bernouilli's equation

$$
P_{1}+\frac{1}{2} \rho u_{1}^{2}+\rho h_{1} g=P_{2}+\frac{1}{2} \rho u_{2}^{2}+\rho h_{2} g
$$

Fluid equation of motion -Navier-Stokes Eqn

$$
\rho\left(\frac{\partial u}{\partial t}+u \cdot \nabla u\right)=-\nabla P+\rho \eta \nabla^{2} u
$$

Turbulence arises at high Reynolds Number

$$
R e=\frac{v_{s} L}{\eta}
$$

Lecture II

- Bose-Einstein fluids: ultracold state of matter; exhibit supefluidity, infinite heat conduction, quantum effect
- Degeneracy for

$$
T_{c} \lesssim \frac{h^{2}}{3 m k_{B}} n^{2 / 3}
$$

粼 Plasmas: superhot state of matter; fluid like but with strong interparticle force; exhibit collective effects:

柤 Debye shielding

$$
\begin{aligned}
\lambda_{d} & =\left(\frac{\epsilon_{0} k_{B} T}{n e^{2}}\right)^{1 / 2} \\
\omega_{p} & =\left(\frac{n e^{2}}{\epsilon_{0} m}\right)^{1 / 2}
\end{aligned}
$$

