Structure of Matter

Problem Sheet 4 Answers

1. (a) Iceberg is in equilibrium so
weight of berg $=$ buoyant force on cube $=$ weight of water displaced
If volume displaced $=V_{1}$ and total volume $=V$
$\rightarrow \rho_{\text {ice }} V g=\rho_{\text {water }} V_{1} g$
hence fraction submerged $=V_{1} / V=\rho_{\text {ice }} / \rho_{\text {water }}=920 / 1025=0.898(89.8 \%)$
(b) For balloon to be in equilibrium, weight of balloon + weight of helium filled $=$ weight of air displaced
$5 \times 10^{-3} g+\frac{4}{3} \pi r^{3} * \rho_{H e} g=\frac{4}{3} \pi r^{3} * \rho_{\text {air }} g$
$5 \times 10^{-3}=\frac{4}{3} \pi r^{3} n_{0}\left(m_{\text {air }}-m_{H e}\right)$
$r^{3}=\frac{5 \times 10^{-3}}{\frac{4}{3} \pi\left(1.01 \times 10^{5} / k_{B} * 273\right)(29-4) 1.66 \times 10^{-27}}$
$r=0.10 \mathrm{~m}=10 \mathrm{~cm}$
2. (a) Incompressible so $u_{1} A_{1}=u_{2} A_{2}$
$u_{2}=\pi 0.8^{2} * 1.2 / \pi 0.4^{2}=4.8 \mathrm{~m} / \mathrm{s}$
(b) Flow rate $=u . A=\pi\left(0.4 \times 10^{-2}\right)^{2} * 4.8=2.41 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$

So time taken to fill tank $=20 / 2.41 \times 10^{-4}=8.29 \times 10^{4} \mathrm{~s} \approx 23$ hours
3. (a) Effective volume is $b=4 V_{m}=4 \frac{4}{3} \pi r^{3}$ so $r=(3 b / 16 \pi)^{1 / 3}=\left(3 \cdot 6.49 \times 10^{-29} / 16 \pi\right)^{1 / 3}=1.57 \times 10^{-10} \mathrm{~m}=1.57 \AA$
(b) $T_{c}=\frac{8 a}{27 k_{B} b}=\frac{8 \cdot 3.86 \times 10^{-49}}{27 k_{B} 6.49 \times 10^{-29}}=128 \mathrm{~K}$
4. (a) 3 directions of vibration with 2 degrees of freedom for each direction (one pe and one ke) $\rightarrow n_{d}=6$
$U=6 \times \frac{1}{2} N k_{B} T=3 N k_{B} T$,
$C_{V}=\left(\frac{\partial Q}{\partial T}\right)_{V}=\left(\frac{\mathrm{d} U}{\mathrm{~d} T}\right)$ (from first law with no work done due to constant V)
$\rightarrow C_{V}=3 N k_{B}$
(b) For 1 mole $C_{V_{m}}=3 N_{A} k_{B}=3 R=24.9 \mathrm{~J} / \mathrm{K}$ per mole $=5.96 \mathrm{cal} / \mathrm{K}$
5. (a) $\Delta L=23.1 \times 0.3 \times(77-293) \mu \mathrm{m}=-1.5 \times 10^{3} \mu \mathrm{~m}=-1.5 \mathrm{~mm}$
(a) $\Delta L=1.17 \times 10^{-5} \times 320 \times(-30)=-0.112 \mathrm{~m} \sim-11 \mathrm{~cm}$
(b) Volume $V=L^{3}=\left\{L_{0}(1+\alpha \Delta T)\right\}^{3}=L_{0}^{3}(1+\alpha \Delta T)^{3}$
$\approx L_{0}^{3}(1+3 \alpha \Delta T+\ldots) \quad$ ignoring terms in α^{2} or higher due to smallness
Since $V_{0}=L_{0}^{3}$, then $\Delta V=V_{0} 3 \alpha \Delta T=V_{0} \beta \Delta T$, i.e. $\beta=3 \alpha$
6. (a) State zero (ground) has probability $p_{0}=A \mathrm{e}^{-E / k_{B} T}$

State one has probability $p_{1}=A \mathrm{e}^{-(E+\Delta E) / k_{B} T}$

Total probability $=1$,
so $A \mathrm{e}^{-E / k_{B} T}+A \mathrm{e}^{-(E+\Delta E) / k_{B} T}=1$
$\rightarrow \quad A=1 /\left\{\mathrm{e}^{-E / k_{B} T}\left(1+\mathrm{e}^{-\Delta E / k_{B} T}\right)\right\}$
So $N_{0}=N p_{0}=\frac{N}{\left(1+\mathrm{e}^{-\Delta E / k_{B} T}\right)}$
and $N_{1}=N p_{1}=\frac{N \mathrm{e}^{-\Delta E / k_{B} T}}{\left(1+\mathrm{e}^{-\Delta E / k_{B} T}\right)}$
(b) Relative proportions $N_{1} / N_{0}=\mathrm{e}^{-\Delta E / k_{B} T}$, so
i. $k_{B} T=0.1 \Delta E \quad$ ratio $=\mathrm{e}^{-0.1}=4.5 \times 10^{-5}$
ii. $k_{B} T=0.3 \Delta E \quad$ ratio $=3.6 \times 10^{-2}$
iii. $k_{B} T=\Delta E \quad$ ratio $=0.368$
iv. $k_{B} T=10 \Delta E \quad$ ratio $=0.905$
(c) $E=0.023 * 1.602 \times 10^{-19}=3.68 \times 10^{-21} J=k_{B} T$
$T=267 \mathrm{~K}$. This compares with its melting point which is 312 K
(d) $E=4.2 * 1.602 \times 10^{-19}=6.73 \times 10^{-19} J=k_{B} T$
$T=48,800 \mathrm{~K}$. This corresponds to conversion to a plasma
(e) $\lambda=h / p>n^{-1 / 3}$, but $\langle p\rangle^{2} / 2 m=\frac{3}{2} k_{B} T$
$\rightarrow \quad\langle p\rangle=\left(3 k_{B} T m\right)^{1 / 2}$
$\rightarrow \quad h /\left(3 k_{B} T m\right)^{1 / 2}>n^{-1 / 3}$
$\rightarrow \quad T<\left(h^{2} / 3 m k_{B}\right) n^{2 / 3}$
(f) $n=2000 /\left(1 \times 10^{-5}\right)^{3}=2 \times 10^{18} \mathrm{~m}^{-3}$

So $T<\left(\left(6.626 \times 10^{-34}\right)^{2} /\left(3 \cdot 86 \cdot 1.66 \times 10^{-27} \cdot 1.38 \times 10^{-23}\right)\right)\left(2 \times 10^{18}\right)^{2 / 3}$
$T<1.18 \times 10^{-7} \mathrm{~K}=118 \mathrm{nK}$
Corresponding energy for this temperature $=k_{B} T=1.18 \times 10^{-7} \cdot 1.38 \times 10^{-23}=$ $1.63 \times 10^{-30} \mathrm{~J}=10^{-11} \mathrm{eV}$
7. (a) For adiabatic change $P V^{\gamma}=A$ (= constant)
$P=A V^{-\gamma} \quad \rightarrow \quad \frac{\mathrm{d} P}{\mathrm{~d} V}=-A \gamma V^{-\gamma-1}=-\gamma P / V$
So $K=\gamma P$ and $c_{s}=\sqrt{K / \rho}=\sqrt{\gamma P / \rho}$
(b) But for ideal gas $\rho=n_{0} \times m=\frac{m P}{k_{B} T}$
so $c_{s}=\sqrt{\gamma k_{B} T / m}$
For air, $m=29 * 1.66 \times 10^{-27}, \gamma=1.4, c_{s}=\sqrt{\frac{1.4 * k_{B} * 273}{29 * 1.66 \times 10^{-27}}}=331 \mathrm{~m} / \mathrm{s}$
For He, $m=4 * 1.66 \times 10^{-27}, \gamma=5 / 3, c_{s}=\sqrt{\frac{(5 / 3) * k_{B} * 273}{4 * 1.66 \times 10^{-27}}}=973 \mathrm{~m} / \mathrm{s}$
8. (a) The E field can be obtained from Gauss's law, consider a cylinder, with one flat face (of area A) in the plane between the separated charges, and the other far from the charges where the E field is zero. By symmetry there is no field through the curved sides, so integrating over the side which has only ions in a layer of
thickness δ

$$
\begin{aligned}
& E \cdot A=q / \epsilon_{0}=n_{0} \cdot e \cdot \delta \cdot A / \epsilon_{0} \\
\rightarrow \quad & E=n_{0} e \delta / \epsilon_{0}
\end{aligned}
$$

(b) $m_{e} \frac{\mathrm{~d} \delta}{\mathrm{~d} t}=-e E_{\max }=-e n_{0} e \delta / \epsilon_{0}$
$\rightarrow \delta^{\prime \prime}+\left(\frac{n_{0} e^{2}}{m_{e} \epsilon_{0}}\right) \delta=0$
which is SHM with angular frequency $\omega_{p}=\left(\frac{n_{0} e^{2}}{m_{e} \epsilon_{0}}\right)^{1 / 2}$ - the plasma frequency
(d) $u_{E}=\frac{1}{2} \epsilon_{0} E^{2}=\frac{1}{2} \epsilon_{0}\left(n_{0} e \delta / \epsilon_{0}\right)^{2}=\frac{1}{2}\left(n_{0}^{2} e^{2} \delta^{2} / \epsilon_{0}\right)$
(e) $\frac{1}{2} n_{0} k_{B} T=\frac{1}{2}\left(n_{0}^{2} e^{2} \delta^{2} / \epsilon_{0}\right)$
rearrange to get, $\delta_{\max }=\left(\frac{\epsilon_{0} k_{B} T}{n_{0} e^{2}}\right)^{1 / 2}$
(f) $\omega_{p}=\left(\frac{n_{0} e^{2}}{m_{e} \epsilon_{0}}\right)^{1 / 2}=\left(\frac{10^{20} e^{2}}{9.1 \times 10^{-31} 8.85 \times 10^{-12}}\right)^{1 / 2}=5.6 \times 10^{11} \mathrm{~Hz}$
$\delta_{\max }=\left(\frac{\epsilon_{0} k_{B} T}{n_{0} e^{2}}\right)^{1 / 2}=\left(\frac{8.85 \times 10^{-12} \cdot 1.38 \times 10^{-23} \cdot 10^{8}}{10^{20} \cdot\left(1.60 \times 10^{-19}\right)^{2}}\right)^{1 / 2}=6.91 \times 10^{-5} \mathrm{~m}$

